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Abstract

Automated Planning is a method used in artificial intelligence systems such as au-
tonomous robots or automatic satellite control. While there already are some planning
algorithms that make use of multi-core processors, this thesis proposes a parallelized
version of the Graphplan algorithm. The proposed algorithm works by transforming
plan extraction problems for different horizon lengths into the Boolean Satisfiability
Problem (SAT) and solving multiple SAT formulas in parallel. Experiments based on
the problem instances provided by the 2014 International Planning Competition show
that this method results in a significant parallel speedup and is able to outperform the
state-of-the-art SAT-based sequential planner Madagascar in some problem domains. A
disadvantage of the proposed algorithm is high memory consumption for some problems
with certain configurations.

Zusammenfassung

Automatisierte Planung ist eine Methode, die in Systemen der kiinstlichen Intelligenz wie
beispielsweise autonomen Robotern oder automatischer Satellitensteuerung eingesetzt
wird. Wahrend es bereits einige Planungsalgorithmen gibt, die mehrere Rechenkerne
von Multi-Core-Prozessoren nutzen, schlagt diese Arbeit eine parallelisierte Variante
des Graphplan-Algorithmus vor. Der vorgeschlagene Algorithmus funktioniert indem
er die Extrahierung von Planen aus mehreren Ebenen des Planungsgraphen in das
Erfiillbarkeitsproblem der Aussagenlogik (SAT) transformiert und mehrere SAT-Formeln
parallel 16st. Experimente, die auf den Probleminstanzen der 2014 International Plan-
ning Competition basieren, zeigen, dass diese Methode zu einem signifikanten paralle-
len Speedup fithren kann und den state-of-the-art SAT-basierten Planungsalgorithmus
Madagascar in einigen Problemdoménen tibertrifft. Ein Nachteil des vorgeschlagenen
Algorithmus ist der hohe Speicherbedarf fiir einige Probleme bei gewissen Konfiguratio-
nen.
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1 Introduction

Automated Planning is a field of Artificial Intelligence (AI) that deals with finding
sequences of actions that transform a world state from a given initial state to a desired
goal state. This is a key ability for a lot of AI systems such as autonomous robots [I] or
the automatic control of satellites [2].

The development of modern processing units is currently going in the direction of
adding more cores to processors instead of increasing the clock rate. However, this
presents a challenge for software developers as applications must be adapted to run on
multi-core processors in order to utilize this additional computational power [3]. Parallel
algorithms for many applications, e.g. SAT solving have shown that this effort can result
in a substantial speedup compared to sequential algorithms [4].

There are numerous sequential and parallel algorithms for solving planning problems,
such as IBaCoP [5], Madagascar [6] and Arvandherd [7]. An approach that hasn’t yet
been parallelized is that of the Graphplan algorithm first proposed by Blum and Furst
in 1997 [§]. Graphplan works by repeatedly expanding a graph structure (the Planning
Graph) and extracting a plan using this graph. Certain algorithms based on Graphplan
use SAT solving in the extraction step which proved to be a very efficient strategy [9, [6].

A mechanism to achieve even better performance is to systematically skip the plan
extraction in certain iterations of the algorithm [6]. The idea of using this in a parallel
algorithm is promising, because several computationally expensive extraction processes
can run on multiple processor cores at the same time. This thesis proposes such a
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Figure 1.1: Comparing different configurations of the implemented algorithm to the
state-of-the-art sequential planner Madagascar



parallel algorithm in order to use the computational power of multi-core processors and
thus achieve a further speedup. Figure shows a preview of the results regarding
parallel speedup.

The thesis starts by introducing the basics of planning and SAT solving in section
Section |3| describes the algorithms and techniques that this work is based on. In
section [4] a parallelized version of the Graphplan algorithm is proposed. Section [5] shows
the implementation of the proposed algorithm and highlights relevant details. Section [0]
shows the parallel speedup of the algorithm in different configurations and a comparison
to the state-of-the-art SAT-based planner Madagascar. The thesis is concluded in section
[7] which will also discuss ways in which the algorithm can be improved further in future
work.



2 Background

The definitions in this section are based on [10] 11, 12].

2.1 Planning

Classical planning problems can be defined as follows [10]: A planning problem instance
IT is a tuple (X, A, s, sg) where

o X ={x1,...,x,} is a set of multivalued variables with finite domains dom(z;), i.e.
each variable z € X has a set of possible values dom/(x).

e A is a set of actions (or operators). Each action a € A is a tuple (pre(a), eff (a)).
Both pre(a) and eff(a) are sets of assignments of variables in X', they are of the
form (x = v) where x € X and v € dom(z). pre(a) is the set of preconditions
which must hold in order for a to be executed. eff(a) is the set of effects that hold
after the execution of a.

e sy is the initial state, a full assignment of the variables in X.
e s is the goal state, a partial assignment of the variables in X.

A state is a full assignment of the variables in X, i.e. each variable z € X is assigned
exactly one value from its domain dom(x). Applying an action a € A in state s means
changing into a state s’ where eff (a) C s’ and the difference between s and s’ is minimal.
The planning problem for an instance II is to find a sequence of actions aq,ao,...,a,
such that

e All the actions are well-defined within the problem: Vi : a; € A
e Let s; be the initial state, and s;4.1 the state after application of a; in s;
e All actions are applicable in their respective state: Vi : pre(a;) C s;

e After application of all actions a;, the goal is satisfied: sg C sp41

The planning problem definition can be varied in numerous ways. Examples for
this are cost-optimal planning (plans must be minimal in regard to action costs) and
temporal planning (execution time and duration of actions is considered). This thesis
will only consider satisficing classical planning problems, i.e. the objective is to find any
plan that solves a given problem as defined in this section.



2.1.1 Example: Gripper problem

The Gripper problem is a classical planning domain used in the 1998 AI Planning Sys-
tems Competition [13]. It is about a robot with two grippers that needs to transport balls
from one room to another. Figure [2.1] considers an example that starts with four balls
and the robot in room A, and no balls in room B. As figure [2.1€] shows, the goal state
is that all four balls are in room B. Note that the goal state doesn’t make a statement
about the robot’s position or the contents of room A, as it is just a partial assignment
to the problem variables.

A B

@0 | |
< o)
®e | | ®® |

(a) Initial state (b) The robot grabs ball 1 and ball 2

}
|

b

A
@e |

(c) The robot moves from A to B (d) The robot drops ball 1 and ball 2

@@

|® @

(e) Goal: all four balls are in room B

Figure 2.1: Example of a planning problem from the Gripper domain

This problem instance can be formalized as a tuple (X, A, sy, sg) as follows: There
are variables for the robot’s position, for the balls’ positions and for the content of each
of the robot’s grippers:

X = {robot-at, ball-aty, ..., ball-at,, gripper-left, gripper-right } (2.1)
The robot can be in either room A or room B. Each ball can be in room a, room

b or in any of the robot’s two grippers. In this case it’s not important for the ball’s
domain which gripper the ball is in, because there is a separate variable for the grippers.

W



A gripper can hold any of the four balls or it can be free.

dom(robot-at) = {room-a, room-b} (2.2)

Vi € [1,4] : dom(ball-at;) = {room-a, room-b, gripper} (2.3)

dom(gripper-left) = dom(gripper-right) = {bally, ..., ball, free} (2.4)

There are three classes of actions in A that the robot can execute: grabbing a ball,
dropping a ball and moving into another room. In this example, the robot can move

from room A to room B and vice versa. This means there are actions move(a,b) and
move(b, a) which are defined as follows:

pre(move(a, b)) = {robot-at = room-a} (2.5)

eff (move(a, b)) = {robot-at = room-b} (2.6)

and similarly for move(b, a). Grabbing or dropping a ball can happen in either room,
with either gripper and with any of the balls. In order to grab a ball, the robot has to
be in the same room as the ball, and the gripper has to be free. Dropping a ball requires

the ball to be in one of the grippers and results in the ball being in the same room as the
robot and the gripper being free. The grab and drop actions are formalized as follows:

Vi € [1,4],r € {room-a, room-b}, g € {gripper-left, gripper-right} :

pre(grab(ball;, r, g)) = {robot-at = r,ball-at; = r,g = free}

eff (grab(ball;,r,g)) = {ball-at; = gripper,g = ball;}
pre(drop(ball;,r, g)) = {robot-at = r,ball-at; = gripper,g = ball;}
eff (drop(ball;,r, g)) = {ball-at; = r,g = free} (2.

Finally, the initial state and goal state are defined as:

N~ —~ —
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sy = {robot-at = room-a,

ball-aty = room-a, ..., ball-aty = room-a,
gripper-left = gripper-right = free} (2.11)
sq = {ball-aty = room-b, ... ball-aty = room-b} (2.12)

To complete this example, a valid solution to the problem is:

grab(bally, room-a, gripper-left), grab(balls, room-a, gripper-right),
move(a, b),
drop(bally, room-b, gripper-left), drop(bally, room-b, gripper-right),
move(b, a),
grab(balls, room-a, gripper-left), grab(bally, room-a, gripper-right),
move(a,b),

drop(balls, room-b, gripper-left), drop(bally, room-b, gripper-right)



2.2 SAT Solving

A boolean variable x is a variable that can have one of two possible values: True (1) or
False (0). A literal is either a boolean variable (z, positive literal) or its negation (-,
negative literal). A clause is a disjunction (V) of literals. The empty clause L does not
contain any literals and always evaluates to False. A formula in conjunctive normal form
(CNF) is a conjunction (A) of clauses. An example for a formula in CNF is

F = (z1Vx2) A (x3) A (—21 V 24) (2.13)

All formulas in this thesis will be given in CNF or are easily transformable into CNF.

A truth assignment ¢ is a function that assigns a truth value (True or False) to each
variable x. This means that either ¢(x) = True or ¢(x) = False. An assignment satisfies
a positive literal if ¢(x) = True, and it satisfies a negative literal if ¢(z) = False. A
clause is satisfied by an assignment ¢, if it satisfies any of its literals. Finally, an
assignment ¢ satisfies a CNF formula if ¢ satisfies all clauses in it. A formula F' is
satisfiable if there exists an assignment that satisfies . A formula can have multiple
satisfying assignments. As an example, the formula is satisfiable with ¢ being a
possible solution, where:

¢(x2) = False (2.14)
¢(x3) = d(x4) = True (2.15)

The Boolean Satisfiability Problem (SAT) is the problem of determining whether a
given formula in propositional logic is satisfiable, and if so, finding a satisfying assign-
ment. A SAT solver is an algorithm that takes a formula (here always in CNF) and
outputs whether the formula is satisfiable or unsatisfiable. In case it’s satisifable, the
SAT solver additionally outputs a truth assignment that satisfies the formula.



3 Related Work

3.1 Incremental SAT Solving with IPASIR

Incremental SAT Solving means consecutively solving several similar but slightly changed
formulas. The idea is that the effort spent on the first formula can be re-utilized for sub-
sequent formulas, including e.g. learned clauses and variable scores used for heuristics.
This can lead to significant performance boosts [12].

The Re-entrant Incremental Satisfiability Application Program Interface (IPASIR)
[14] is an interface for Incremental SAT Solving. The function headers that IPASIR
provides are shown in listing A SAT solver must implement all the functions in
order to be used in applications using IPASIR.

Listing 3.1: TPASIR function headers

const char* ipasir_signature();

void* ipasir_init();

void ipasir_release(void* solver);

void ipasir_set_terminate(void* solver, void* state,
int (*terminate) (void* state));

void ipasir_set_learn (void* solver, void* state, int max_length,
void (*learn) (void* state, int* clause))

void ipasir_add(void* solver, int lit_or_zero);

void ipasir_assume(void* solver, int 1lit);

int ipasir_solve(void* solver);

int ipasir_val(void* solver, int 1lit);

int ipasir_failed(void* solver, int 1lit);

By calling ipasir_init, an instance of the SAT solver is created and returned as
a pointer. This pointer has to be passed as the first parameter to the most other
IPASIR functions in order to use this SAT solver instance. ipasir_set_terminate sets
a termination condition for the SAT solver by passing a callback function that is called by
the solver during solving. Calling ipasir_release properly releases the given instance
and frees its resources.

To manipulate the formula that is to be solved, there are the ipasir_add and
ipasir_assume functions. Adding clauses is done by adding single literals one at a time.
Literals are represented by integers: positive literals are positive literals and negative
literals are negative integers. To mark the end of a clause, 0 is passed instead of a literal.
ipasir_assume can be used to make temporary partial assignments, i.e. to prescribe
that certain literals must be satisfied in the next solving attempt. ipasir_solve will
try to solve the current formula with the given assumptions. After one call to this func-

7
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tion, all assumptions previously made with ipasir_assume are cleared. ipasir_solve
either returns that the formula is SAT, UNSAT or that solving has been terminated
prematurely. In the case that the formula is SAT, ipasir_val can be used to extract
the solution, i.e. the truth assignment to each variable. If the literal 1it is passed to
it, either 1it (literal is True), -1it (literal is False) or 0 (literal is not important) is
returned. A full description of all function headers can be found in [14].

Listing 3.2: TPASIR usage example

// Return value of solve in case the formula is SAT
#define SAT 10

void *solver = ipasir_init();

// Adding the clauses

ipasir_add(solver, -1);
ipasir_add(solver, 2);
ipasir_add(solver, 0);

// Assume zl1 to be true

ipasir_assume(solver, 1);

if (ipasir_solve(solver) == SAT) {
// Get the value of z2 if formula is SAT
int valueOfX2 = ipasir_val(solver, 2);
printf ("%d\n", value0fX2);

}

ipasir_release(solver);

Listing shows an example C code demonstrating the usage of TPASIR. In lines
one clause is added that makes up the whole formula (—z1 V 22, which is equivalent
to x1 — x2). More clauses can be added, but this is not done here in order to keep the
example concise. Next, the literal z1 is assumed (line to be true for the next solving
attempt which is started in line Since the formula is SAT (also considering the given
assumption), lines 15[ and [L6{ will be executed. As described above, ipasir val extracts
the value of the literal x5 from the truth assignment that the solver found. In this case
xo is satisfied because x1 was assumed to be true and thus the program will output 2 in
the end. Lastly, the solver is released in line

3.2 Planning Problem Formalisms

There are several different formalisms for describing planning problems, e.g. PDDL [15],
SAS+ [16] and STRIPS [I7]. It is common for planning algorithms to accept PDDL
as an input format [6, [I8] and to use a technique called grounding to translate such
problems to SAS+. The reason for this is that the SAS+ format is easier to parse
automatically. The algorithm proposed in this thesis will use the grounding algorithm
of the Fast Downward system [19] to translate PDDL to SAS+, so that meaningful

8



comparisons to other planners can be made without implementing a complex PDDL
parser from scratch.

3.3 The Graphplan Algorithm

Graphplan [8] is a graph-based approach to planning. The two main mechanisms of the
algorithm are expanding the planning graph and plan extraction. Graphplan works by
repeatedly expanding and extracting until a solution is found, or the problem is proven
to have no solution.

Definition 3.3.1. A proposition is an assignment of a value to a variable at a given
time.

The planning graph is a layered graph with two different kinds of nodes: propositions
and actions (as defined in [2.1]). The graph is layered in the sense that it can be divided
into proposition layers and action layers, each containing only one kind of node. Propo-
sition layers and action layers are alternating, i.e. nodes in a proposition layer only have
edges to the next action layer which in turn only has edges to the next proposition layer.
The first layer of the planning graph is a proposition layer called the initial layer. It
contains one node for each proposition that is true in the initial state of the problem.
Figure[3.1] shows part of a planning graph for a simplified version of the gripper problem
as described in 2.1.7]

Definition 3.3.2. A Precondition edge (p,a) indicates that the proposition p is a pre-
condition of action a. The set of preconditions of an action a is denoted as pre(a).

Definition 3.3.3. A Positive effect edge (a,p) indicates that the execution of action
a will add proposition p in the next layer. The set of positive effects of an action a is
denoted as eff T(a). The set of actions that has p as a positive effect, i.e. has a positive
effect edge to p, is denoted as act™(p).

Definition 3.3.4. A Negative effect edge (a,p) indicates that the execution of action a
will delete proposition p in the next layer. The set of negative effects of an action a is
denoted as eff ~(a).

Each edge in the planning graph is either a precondition edge, a positive effect edge
or a negative effect edge.

Definition 3.3.5. A no-op action a(p) of a proposition p is an action with pre(a) = {p},
eff © = {p}, eff = 0.

Not all propositions present in a layer are necessarily true in the respective point in
time. It rather means that there is a possibility for the proposition to be true. Note that
proposition layer P, always contains all propositions of P;. The same is true for actions:
An action layer contains all actions that could possibly be executed at that time. To
ensure that every layer is always at least as big as previous layers, there is a no-op action
n for each proposition p.



Proposition layer Py Action layer Ay Proposition layer P,

robot—at = A @ — robot—at = A
ball—at = A \ @ ~ Rl — ball—at = A
gripper = free o = el /,’/:, gripper = free

move(a, b) 2 ,/’,/’/ robot—at = B

grab(ball, a, left) @all—at = gripper
gripper = ball

Figure 3.1: Example of a planning graph for a simplified gripper problem with one ball
and one gripper. Negative effect edges are represented by dashed lines and no-op actions
are represented by dots. Planning graphs can and usually do have more than one action
layer.

Pairs of propositions can be mutually exclusive (mutex) in a layer, e.g. a robot can’t
be in room A and room B at the same time (robot—at = A and robot—at = B are
mutually exclusive in every layer). The same is true for actions. The set of propositions
that are mutually exclusive to a proposition p in layer P; is denoted as uP;(p). Likewise,
the set of actions that are mutually exclusive to an action a in A; is denoted as pA;(a).

At the start of the algorithm, the planning graph consists only of the initial layer.
The graph is then expanded from its current state. This means that the algorithm
determines all possible actions based on the initial propositions and adds them to a
new action layer. Consequently, all propositions that are enabled by these actions form
the next proposition layer. The expanding algorithm also determines sets of mutually
exclusive propositions and actions respectively. The planning graph can reach a fized
point. This means that the last layer of the graph doesn’t change after expanding,
ie. P, =P,1, Ay, = Ap_1, uP, = pP,_1 and pA, = pA,_1. Initially the graph is
expanded multiple times before the first plan extraction, until either all goal propositions
are present in the graph or a fixed point has been reached. This is called the fixed-point
iteration. In the case that a fixed point is reached here, the problem has no solution.

In the next step, the algorithm tries to extract a plan from the planning graph using
a backwards-search. This means that all the goal propositions G are assumed to be true
at the last proposition layer of the graph. Based on that, a subset A of the actions in the
previous action layer have to be determined so that these actions satisfy all propositions
in G and are not mutex with each other (there can be multiple options for sets A).
The procedure is repeated using the preconditions of the actions in A as a goal for the
previous proposition layer. If the initial layer is reached, a solution is found and the
algorithm terminates. If no more set of actions satisfying the given constraints can be
found in a given layer, this specific set of goals is added to the so-called nogood table and

10



extraction has to go back one layer again. If this happens at the last layer of the graph,
extraction has failed in this iteration. If extraction fails, the fixed-point of the graph has
already been reached and the nogood table doesn’t grow at the fixed-point layer, then
the planning problem has no solution.

Algorithm 1 Graphplan

1: procedure GRAPHPLAN(Py, Actions, Goal)

2 V<0,n«0 > Nogood table and its size
3 G+ (P),i+1 > Planning graph and amount of proposition layers
4

5: repeat > Initial fixed-point iteration
6 1—1+1

7 G + Expand(Q)

8 until (Goal C P; A Goal? N uP; = ) V FizedPoint(G)

9: > Abort if goal is not reachable
10: if Goal ¢ P; vV Goal® N uP; # 0 then return failure

11:

12: Il + Extract(G,Goal, i) > Initial attempt at plan extraction
13: if FizedPoint(G) then

14: K41 > Remember the fixed-point layer
15: n <« |V (k)| > Keep track of the nogood table’s size
16:

17: while II = failure do > Main loop of the algorithm
18: 1 1+1 > Keep expanding and extracting until plan is found
19: G + Ezpand(G)
20: I + Extract(G,Goal, 1)
21: if IT = failure \ FizedPoint(G) then
22: if n = |V (k)| then return failure > Problem has no solution
23: n < |V (k)]
24:
25: return II

Algorithm [I] shows the main procedure of Graphplan. Algorithm [2] shows the recur-
sive procedures used for plan extraction [ﬂ The FExtract procedure keeps track of the
nogood table, and calls GPSearch with the desired goal. GPSearch tries to find a set
of actions that satisfy this goal (lines . It does so by choosing one action that
enables one proposition and that is not mutex to the actions that were already chosen.
The algorithm backtracks to line where the selection of actions happens, in case that
subsequent calls to GPSearch fail. When all propositions of the given goal are satisfied
by at least one of the chosen actions, the algorithm will call Extract recursively with all
preconditions of the chosen actions (lines [L3HL6)).

'The pseudo-codes originate from [20].

11



Algorithm 2 Plan Extraction

1
2
3
4:
5:
6
7
8
9

: procedure EXTRACT(G, Goal, )
if i = 1 then return () > Trivial success

if Goal € V(i) then return failure > Goal is in nogood table

m; < GPSearch(G,Goal, ), 1)
if m; # failure then return m; > Return plan up to this layer

V(i) « V(i) U{Goal} > Add goal to nogood table
return failure

10:

11

12:
13:
14:
15:

16:
17:
18:
19:
20:
21:

: procedure GPSEARCH(G, Goal, 7;,1)
if Goal = () then
> Call Extract with preconditions of chosen actions
II «+ Extract(G,{pre(a) | a € m;},i — 1)
if I = failure then return failure
return II||m; > Add chosen actions to plan and return it
else
select any p € Goal
> Get actions that satisfy p and are not mutex to chosen actions
resolvers < {a € A; | a € act™(p) AVb € m; : (a,b) ¢ pA;}
if resolvers = () then return failure

22:

23:

non-deterministically choose a € resolvers > Backtrack here

24:

25:
26:

> Recursive call with less goals and additional chosen actions
return GPSearch(G,Goal — eff *(a),n; U {a},1)

As an example, take the graph shown in figure When calling FExtract on propo-

sition layer P and Goal = {ball—at = gripper}, GPSearch will be called with the same

g0

al and find that the only suitable action in Aj; is grab(ball,a,left). Thus, it will be

chosen and call GPSearch again, this time with an empty goal. Since the goal is empty,
GPSearch will call Extract at the previous proposition layer, i.e. Py, with the precondi-
tions of the chosen action, i.e. {robot—at = A,ball—at = A, gripper = free}. Because

Py

is the first layer of the planning graph, Eztract will return an empty plan (()). The

second call of GPSearch will then add the action grab(ball,a,left) to the first layer of
the plan and return it. The first call of GPSearch passes that plan through to the first
call of Extract which returns it back to the main algorithm. Since plan extraction was
successful, the algorithm terminates and outputs the plan ({grab(ball, a, left)}).

12



3.4 Combining Graphplan and SAT Solving

Using the planning graph generated by expanding as described in[3.3] the plan extraction
problem can be transformed into SAT as follows [21]:

For all action layers A,, let P, be the proposition layer before A, and P, the
proposition layer after A,. All actions that are taken in A, require their preconditions
to hold in P, and their effects in P, 1. These constraints can be formalized and added
to the SAT formula as PIEL

Va € A, :(Vp € pre(a) : ap, — pm) (3.1)
AVeT € efft(a) : an — e;LnH)
AVe  €eff (a):an — e, 1)

Furthermore, an action a can’t be chosen together with any action b that is mutex
with it in A,:

Va € A, : Vb € pAy(a) : —a, V —by, (3.4)

Additionally, in order for a proposition to hold in a layer P,,41, it has to be enabled
by an action in the previous action layer A,. This can be ensured by the following
clauses for each proposition layer Py, 41:

Vp € Pry1:p— V o (3.5)

a€actt(p)NAyn

Then, the variables representing the goal propositions in the SAT formula are as-
sumed to be true. This ensures that satisfying assignments to this formula are valid
solutions to the planning problem at hand. Lastly, if the formula is satisfiable, the satis-
fying assignment is checked for the values of all the variables representing actions. The
actions whose variables are set to true in the assignment will form the plan.

Using this technique instead of the original backwards-search can boost the perfor-
mance of Graphplan significantly [9] 21].

3.5 Madagascar: State-of-the-Art SAT Planning

Madagascar [6] is a state-of-the-art planner that is based on Graphplan and uses SAT
Solving for the extraction step of the algorithm. However, it systematically skips extrac-
tion in some iterations. The horizon lengths indicate the numbers of the iterations at
which an attempt at plan extraction will be made. For example, Graphplan as described
in uses horizon lenghts of 1,2, 3,4, .... Madagascar provides different configurations

2If a proposition p holds in layer P, this is denoted as py,, and similarly for actions
3An implication z — y is logically equivalent to the clause -z V y
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for horizon lenghts, e.g. an exponentially growing horizon (1,2,4,8,16,...). Addition-
ally, it solves multiple SAT formulas for plan extraction from different layers of the
planning graph concurrently E| by assigning each problem a given amount of CPU time.
This has proven to be a very efficient technique for plan extraction.

4But not physically parallel, i.e. not on multiple processor cores
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4 Algorithm Description

4.1 Sequential Algorithm

For demonstration purposes, a sequential version of the algorithm proposed in section
is presented first. It is in principle very similar to the Madagascar planner described
in [3.5] as it’s a Graphplan-based approach using SAT solving for plan extraction and
adjustable horizon lenghts. For the plan extraction, a formula is generated as described
in and solved using a SAT solver.

The function A : N — N is a strictly increasing function used for calculating the
horizon lengths. For example, if h(1) = 1,h(2) = 2,h(3) = 4,h(4) =8, ... then a plan
extraction will be done from layers 1,2,4,8,.... Consequentially, this also means that
extraction will be skipped at layers 3,5,6,7, which can save a lot of runtime as shown
by other planners [6]. h can be configured as any strictly increasing function, e.g. a
linear function or an exponential function. A~! is the inverse function of h. This is used
to determine the iteration of the algorithm where a specific horizon length is used for
extraction, in order to decide if further expansion has to happen in the parallel algorithm.

Algorithm 3 Sequential algorithm

. lastActionLayer < 0, last PropositionLayer < 1

: procedure FINDPLAN(goal)
iteration < 0
while true do
while lastActionLayer < h(iteration + 1) do
ExpandGraph()

plan < Extract(goal,last PropositionLayer)
if plan # 1 then return plan

._.
@

iteration < iteration + 1

The graphs in figure show that the runtime of the sequential algorithm can
roughly be divided into time used for graph expansion, generating SAT clauses and
plan extraction. Problems of the same domain show similar characteristics in terms of
runtime for the respective tasks. The time needed to solve a specific planning problem
can be dominated by either of these three tasks. For most problems plan extraction
takes the most time, which makes it a target for parallelization. Another approach is to
parallelize the graph expansion, especially the determination of proposition and action
mutexes. The algorithm proposed in section will consider plan extraction in parallel.
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Figure 4.1: Execution time breakdown of the sequential algorithm on problems of various domains with horizon lenghts of
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4.2 Parallel Algorithm

The parallel algorithm proposed here works similar to the sequential algorithm from the
previous section. It differs in that plans are extracted from several layers in the planning
graph in parallel using a thread pool. However, the algorithm additionally needs to keep
track of the extraction progress to coordinate graph expansion. Algorithm [4] describes
how this works in pseudocode.

Compared to the sequential version (Algorithm , the parallel algorithm declares
two more variables at a global scope (i.e. all threads can access them). lastFailed Layer
indicates the latest layer in the planning graph from which plan extraction has been
attempted and failed. This is updated by the extraction threads after each failed plan
extraction and read by the thread running the main loop (lines in order to deter-
mine whether to expand the graph. This mechanism is necessary because otherwise the
planning graph would be expanded endlessly, inevitably causing the machine executing
the algorithm to run out of memory. Additionally the algorithm defines a variable for
holding a plan which is written by the first thread that successfully extracts a plan. As
soon as this happens, the algorithm can stop all other extraction threads, terminate,
and output plan.

Algorithm 4 Parallel algorithm
: lastFailedLayer < 0, plan < L

1
2:
3: procedure PARALLELFINDPLAN(goal, threadCount)

4 iteration < 0

5: pool < InitializeT hreadPool (threadCount)

6 while plan = 1 do

7 if iteration < h™!(lastFailedLayer) + threadCount then
8 pool. Enqueuve( ExtractThread(goal, h(iteration)))

9: while lastActionLayer < h(iteration + 1) do

10: ExpandGraph()

11: iteration < iteration + 1
12:

13: procedure EXTRACTTHREAD(goal, layer)
14: p < Extract(goal, PropLayerAfterActionLayer(layer))
15: if p # L then

16: plan < p
17: else
18: last Failed Layer < layer

In each iteration of the mainloop, it is checked whether a graph expansion has to
be done. This is determined by calculating at which iteration the algorithm should be,

!Note that one of the threads is dedicated to running the main loop, i.e. if the algorithm is run with
4 threads that means there will be 3 threads dedicated to extracting plans.
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i.e. how far the graph should have been expanded in order for the specified number of
threads to be able to extract plans (line @ If expansion needs to be done, this also
means that one thread finished execution and failed an extraction (or didn’t have work
to begin with, which happens during the first iterations of the algorithm). Thus, a job
can be queued to extract a plan from the current last layer (i.e. the horizon function
at the current iteration). Then, the planning graph is expanded until the next horizon
length is reached.
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5 Implementation

The algorithm is implemented using C++ 11 in an object-oriented fashion. It is delib-
erately made from scratch instead of based on an existing Graphplan implementation.
When using such a codebase it can be very time-consuming to understand which parts
of the code are prone to race conditions and why that is the case. By implementing the
algorithm from scratch, it can be designed with parallelization in mind.

5.1 Planning Graph and Clause Generation

Since actions have the same edges to the same propositions every time they occur in
the planning graph, each action’s preconditions and effects only have to be stored once.
In the implemented planning graph data structure there is an array of lists for action
preconditions, positive effects and negative effects respectively. To determine quickly if
two propositions p and ¢ are mutex it is important to be able to look up all actions
that have p or g as a positive effect. For this purpose there is also a table that maps
propositions to their enabling actions.

Proposition mutexes and action mutexes are stored in symmetric matrices of size
|P|-|P| and |A]-|A| respectively, with P being the set of all propositions in the problem,
and A the set of all actions. The element x,, in the proposition mutex matrix indicates
the last layer in which the propositions p and ¢ are mutex. If the element’s value is 0
then the two propositions are not mutex in any layer. Action mutexes are implemented
the same way.

The propositions and actions enabled in each layer are stored in vectors of linked
lists, i.e. one list per layer. For generating clauses for the SAT formula, these data
structures have to be read by the respective thread. However, concurrent writing and
reading of these data structures is not thread-safe which means that graph expansion
and clause generation both need to be declared critical section that must not be executed
in parallel. This can become a potential bottleneck in some cases and is in fact a relevant
point for the conclusions drawn in section

5.2 Thread and SAT Solver Pool

The SATSolverThreadPool is a specialized type of Thread Pool. It works similar to a
common thread pool in that a set amount of worker threads are created on initialization
and work can be queued to be done by those threads. Since these threads will be used
for plan extraction using SAT Solving in the algorithm at hand, they need access to a
SAT solver. In order to achieve this, the initialization method of the thread pool takes a
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function pointer as an additional argument. This function pointer serves as a reference
to an initialization method for a SAT Solver and will be called once for each initialized
thread. This means that the code using the Thread Pool has control over how the SAT
solvers will be created and doesn’t have to handle the SAT solvers itself.

5.3 SAT Solver

The SAT solver is an essential part of the algorithm’s configuration, since usually most of
the runtime is used for SAT solving. Different algorithms and implementations for this
can vary substantially in performance, depending on the given problem, i.e. formula.
Since this implementation is using the standardized IPASIR, several SAT solvers can be
tested using the same interface. To find out which implementation is the most suitable
for the task at hand, the following SAT solvers with IPASIR support are evaluated:

e AbcdSAT i17 [22] (First place in the Incremental Library Track of the SAT 2017
competition)

o Glucose [23] version 4 (Second place in the Incremental Library Track of the SAT
2017 competition)

e CryptoMiniSat [24] (First place in the Incremental Library Track of the SAT 2016
competition)

e Lingeling [25]

After a first set of experiments, the solvers Glucose4 and Lingeling showed the best
results. A further set of experiments was conducted to compare these two solvers in
more detail. In order to test for good scalability, only a range of 32 problems from the
IPC14 were chosen for this experiment. Both configurations were run using the parallel
algorithm described in section[4.2] with 8 threads. A timeout of 10 minutes was set, which
means that an unsolved problem instance will add 10 minutes to the total runtime.

As can be seen in figure the configuration with Glucose4 solved one more prob-
lem than the one with Lingeling. Furthermore, Glucose4 solved all the problems that
Lingeling solved. Comparing only the runtimes on problems solved by either configura-
tion, Glucose4 is more than twice as fast as Lingeling. Thus, Glucose4 will be used for
all following benchmarks in this thesis.

5.4 Plan Verifier

Verifying the output of an algorithm makes it easier to detect errors and is usually a
lot less complex than the algorithm itself. This is also true for planning algorithms,
where generated plans can be checked very quickly. For this purpose, the plan verifier
VAL[26] is called after the algorithm terminated and output a plan. The validator
outputs information about the total cost of the plan and whether it is valid. Since the
proposed algorithm is not optimizing for cost, only the latter is interesting in this case.
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SAT Solver Problems solved Total runtime Solved only
Glucose4 16 10507 s 907 s
Lingeling 15 11724 s 2124 s

Table 5.1: Problems solved per SAT solver, total runtime on all tested problems and
runtime on problems that were solved by either solver (solved only)
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—— Glucose4
500 1 —— Lingeling

400 A
300 +

200 A

Time limit [s]

100 A
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Figure 5.1: Number of problems solved by configurations with Glucose4 and Lingeling
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6 Evaluation

In section the implementation of the proposed planner (Parallel Graphplan) is evalu-
ated in several different configurations on a subset of the problem instances. Cactusplots
will be used to visualize and compare the performance of all configurations. In section
the best configuration will then be compared to the state-of-the-art planner Mada-
gascar (introduced in section on a larger set of instances.

6.1 Benchmark Environment

The problems used for evaluation originate from the 2011 and 2014 International Plan-
ning Competitions (IPC11 [27], IPC14 [2§]). Problems are divided into different tracks
and domains. Table lists all used problem instances by their domain and name.
The problems are given in the standardized PDDL format. The selection of instances is
based on the following criteria:

e The problem must be dominated by extraction time rather than time used for
graph expansion, so that there can be a reasonable speedup due to parallelization.

e Problems of some domains (such as Barman, Parking, Tidybot) are generally very
hard to solve for both Madagascar and Parallel Graphplan. These problems are
not part of the experiment comparing the two planners.

The system used to perform the benchmarks has four Intel® Xeon® E5-4640 CPUs
(8 cores with 2.4GHz each), i.e. 32 real cores in total, and 512GB of DDR3-1600 RAM.
To compile Parallel Graphplan, g+-+ version 4.8.4 was used.

6.2 Parallel Speedup

The Parallel Graphplan algorithm is evaluated using the following configurations for
horizon lengths h(z):

o h(z)=4ax
o h(z) =8z
o h(z)=15°
o h(z)=18°
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Each configuration is run using the sequential algorithm as well as using the parallel
algorithm with 2, 4, 8, 16 and 32 threads respectively. Figure shows a cactusplot
for problems solved by each configuration (combination of horizon length function and
amount of threads). Detailed information about number of instances solved per domain
and runtime per problem instance is shown in table and table respectively.

Figure suggests that parallelization is especially efficient when using linear func-
tions for determining horizon lenghts. In that case, configurations with at least 4 threads
solved between 16 and 18 instances, where the sequential algorithm could only solve 11 or
12 instances. This effect is less obvious when using more aggressive exponential horizons,
but the parallel algorithm still solves more problem instances in less time.

An interesting effect that can be observed here is, that configurations with 16 or 32
threads usually solve less problems or solve them slower than their counterparts with 4
or 8 threads. This can have multiple reasons:

e For very small problem instances, the overhead of creating many threads, initializ-
ing SAT solvers and generating clauses can dominate, resulting in a longer overall
runtime.

e If more threads are used, the planning graph has to be expanded more which
results in a higher memory usage. The system can even run out of memory which
happened for domains that contain a lot of actions per layer. This can be observed
in particular on the more aggressive exponential horizon lengths.

Another interesting finding is that in most cases not even all SAT solver instances
are used in the configurations with 16 or 32 threads, and many solvers are only used
once during the whole runtime. This can also be a cause for the longer runtime, as the
generation and adding of clauses to a SAT solver takes longer the less clauses it already
contains. If SAT solvers are only used once, all clauses have to be added to the SAT
solver each time. As pointed out in section[5] this is not done in parallel, since expanding
the graph is not a thread-safe operation.

Summarizing the results of this comparison, the best-performing (i.e. solved the
most instances) configurations of the Parallel Graphplan algorithm in this environment
are:

e Horizon h(z) = 42 with 8 threads (configuration 1)

Horizon h(z) = 1.5 with 8 threads (configuration 3)

Horizon h(x

(z) =

Horizon h(z) = 8x with 8 threads (configuration 2)
(z)
(z) =

¥ with 4 threads (configuration 4)

Figure shows a first comparison of these configurations to Madagascar as a cac-
tusplot. Tables and show the amount of solved problems per domain and time
required for each instance.
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Figure 6.2: Comparison of Madagascar and the best-performing configurations of Parallel

Graphplan
g 3
S 20
E 5 E| =
= 2 = 35
Planner Horizon Threads | @ =~ &= | H
Madagascar 2 12 2 |16
h(z) = 4z 8 1 12 5 |18
h(z) =8 8 1 12 5 |18
Parallel Graphplan (z) .
h(z) = 1.5 8 1 12 5 |18
h(z) = 1.8 4 1 12 4 | 17

Table 6.1: Number of problem instances solved by domain, planner and configuration
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. Parallel Graphplan
Domain  Instance Madagascar
config. 1 config. 2 config. 3 config. 4
p435.1 463.52 568.29 328.73 183.92 1.46
Barman
p536.1 - - - - 274.50
p02-6-4-2 4.21 3.78 4.44 3.28 0.03
p02-6-5-2 22.14 12.36 20.17 26.37 0.15
p02-6-5-3 13.86 12.30 14.88 18.58 0.09
p03-6-4-2 241 2.45 4.58 3.91 0.05
p03-6-5-2 25.08 18.69 24.07 16.53 0.11
. p03-6-5-3 12.73 7.73 7.98 11.43 0.06
Floortile
p04-5-4-2 1.31 2.51 2.62 2.32 0.03
p04-5-5-2 6.95 6.19 6.35 9.42 0.09
p04-6-5-2 29.48 13.64 15.59 14.74 0.11
p04-6-5-3 12.87 12.00 14.58 12.45 0.09
p05-4-3-2 0.14 0.23 0.14 1.23 0.01
p05-6-5-2 16.34 16.70 10.81 20.12 0.11
pl-2-7 81.83 125.53 175.31 531.97 397.74
pl-2-8 248.21 252.73 373.61 - -
p2-2-6 - - - - -
2-2-7 - - - - -
Hiking ©
p2-3-5 371.68 293.60 183.63 264.05 -
p2-3-6 - - - - -
p2-4-4 38.09 98.91 24.17 13.73 16.05
p2-4-5 348.78 478.44 104.11 88.48 -

Table 6.2: Runtime in seconds of different configurations on the tested problem in-
stances, compared to the standard configuration of Madagascar. A dash indicates that
the problem has not been solved within 600 seconds.
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6.3 Comparison to State of the Art

Figure shows that the configuration with h(x) = 1.5 performed best overall. This
horizon length will now be used for making a more thorough comparison with the Mada-
gascar planner. All problem instances and the runtimes of the chosen configurations are
shown in table To get a more detailed view of the parallel speedup of this particular
configuration, it is again run in sequential mode and with 2, 4 and 8 threads respectively.
Figure [6.3| shows the result of the evaluation as a cactusplot.

600
—— Sequential

5009 —— 2 Threads
— —— 4 Threads
f- 4001 —— gThreads
E 300 - Madagascar
g
iZ 200 A

100 A

0 B I R T ; - T T T

0 8 16 24 32 40 48 56 64
Number of problems solved

Figure 6.3: Comparison of the chosen Parallel Graphplan configuration with different
amounts of threads and Madagascar

Domain Instance Parallel Graphplan, i(z) = 1.5° Madagascar
Seq. 2 Th. 4 Th. 8 Th.
p02-6-4-2 29.89 34.77 4.34 4.44 0.03
p02-6-5-2 - - 11.58  20.17 0.15
p02-6-5-3 121.07  160.87 12.91  14.88 0.09
p03-6-4-2 23.88 36.10 5.03 4.58 0.05
p03-6-5-2 - - 43.43  24.07 0.11
Floortile p03-6-5-3 124.47 89.04 10.74 7.98 0.06
p04-5-4-2 3.84 14.41 3.59 2.62 0.03
p04-5-5-2 71.82 102.54 9.16 6.35 0.09
p04-6-5-2 - 41599 11.76  15.59 0.11
p04-6-5-3 83.89  110.79 9.61  14.58 0.09
p05-4-3-2 0.21 4.13 1.11 0.14 0.01
p05-6-5-2 - - 30.00 10.81 0.11
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d-1-8 15.87 24.07 3.11 5.70 2.08
d-2-4 0.04 0.05 0.06 0.20 0.01
d-2-8 49.36 65.03 31.25  40.34 3.15
d-3-4 13.76 18.19 10.37 7.22 0.61
d-4-3 16.21 25.38 7.48 4.72 1.09
GED d-4-8 63.16 74.94 37.78  38.38 0.30
d-7-5 25.59 24.59 10.84 9.38 8.26
d-7-6 9.94 16.22 2.11 3.22 0.78
d-8-1 14.98 33.29 5.25  10.58 1.84
d-8-2 43.81 94.04 17.66  36.04 0.72
d-8-4 66.29 61.89 23.95  23.17 0.65
d-8-9 190.61  308.40 111.72 7241 6.70
pl-2-7 181.31  154.60 143.11 175.31 397.74
pl-2-8 316.30 311.57 328.45 373.61 -
p2-2-6 - - - - -
Hiking p2-2-7 i i i i i
p2-3-5 118.08 55.94 120.97 183.63 -
p2-3-6 - - - - -
p2-4-4 25.09 23.04 14.39 24.17 16.05
p2-4-5 149.13  66.94 87.90 104.11 -
p04 57.81 73.02 51.12 28.34 194.17
p05 - - 8.36 8.36 2.66
p06 15.64 35.59 3.17 2.57 4.79
pO7 - - 4.43 6.08 18.19
p08 20.53 22.44 591 13.13 72.25
p09 263.70  350.61 10.02 6.78 42.51
p10 65.38 40.69 5.09 3.61 13.73
pll - - 5.96 4.22 23.28
PegSol pl2 - - 17.15 6.85 75.30
pl3 6.31 11.56 7.48 4.32 140.92
pl4 - - 28.38 18.53 133.32
plb 30.39 22.83 14.84 5.50 13.56
pl6 - - 35.44 8.56 19.12
pl7 566.79 - 16.45 5.94 194.19
p18 - - 73.93 19.59 -
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Table 6.3: Runtime in seconds of Parallel Graphplan on all tested problem instances,
using h(xz) = 1.5 in sequential mode and with 2, 4 and 8 threads, compared to the
standard configuration of Madagascar. A dash indicates that the problem has not been

pl9 - - 105.18 71.34 -
p20 - - - - -
b-typed-01 | 24.62 21.35 14.97 18.14 5.02
b-typed-02 2.18 5.35 3.17 2.19 10.82
b-typed-03 2.56 7.78 2.94 2.15 15.21
b-typed-04 4.67 5.97 5.82 4.42 2.40
Thoughtful  b-typed-05 | 12.92 15.07 3.91 10.14 50.82
pl1-6-53 - - - - -
pl1-6-59 - - - - -
t-typed-20 - - - - -
t-typed-21 - - - - -

solved within 600 seconds.

of the Thoughtful domain.
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The results in table show that Madagascar is superior in the problem domains
Floortile and GED, while Parallel Graphplan generally performs better on problems of
the Hiking and Peg Solitaire domains. Neither planner is clearly superior on instances



7 Conclusion and Future Work

7.1 Conclusion

This thesis proposed and evaluated a Graphplan- and SAT-based planning algorithm
that runs on multiple processor cores. The evaluation results showed that parallelization
yields a speedup compared to the sequential algorithm and even state-of-the-art SAT-
based planning in some problem domains. This speedup is achieved by doing multiple
plan extractions in parallel using multiple SAT solvers. However, a disadvantage of the
proposed algorithm is the additional memory consumption due to the multiple big SAT
formulas that are generated for plan extraction, which renders the algorithm somewhat
unsuitable for use with a very high amount of threads.

7.2 Future Work

The algorithms can be optimized further in a number of ways. By using planning-specific
heuristics and specialized data structures in the SAT solving algorithm, performance can
be boosted significantly and memory consumption can be reduced [6].

A number of other encodings to SAT such as the 3-step [29], R3-step [30] and R?*3-
step [31] encodings can be used. They allow for a less strict selection of actions in each
layer of the planning graph while preserving the correctness of the algorithm. This also
means that the generated encodings will generally be shorter and thus less memory-
consuming. These strategies can improve the performance significantly for different
problem domains as shown in the respective papers. This allows the algorithm to be
more fine-tuned for specific applications.

Certain strategies focus on enhancing SAT-based planning approaches for optimal
and temporal planning using incremental MaxSAT solving [32] and the Program Eval-
uation and Review Technique (PERT) [33]. This can also be applied to the algorithm
proposed in this thesis. Parallel plan extraction from multiple layers seems especially
promising, because a cost-optimal plan doesn’t necessarily use the least possible amount
of layers in the planning graph. Thus, multiple plans can be extracted in parallel and
then be evaluated for optimality which results in an overall speedup.

Another way to reduce memory usage is to only encode a fixed number n of layers
into SAT and using assumptions to indicate which layers are represented in the formula.
For example, plan extraction can be started with the goal at proposition layer 20, and
for n = 5 may yield an assignment for the propositions in layer 15. The formula can then
be reused to start plan extraction at layer 15 and so on. This way, the same clauses can
be reused more heavily which is a big advantage when using incremental SAT solving.
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It is also a very dynamic approach, since possible proposition assignments at any layer
can be stored in a buffer and be prioritized for extraction using a heuristic. For the same
reason it is also rather complex to implement and was omitted in this thesis.
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