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Hardness measures for resolution

Historically first and best studied

I size of resolution proofs

I tree-like size of resolution proofs

Many ingenious techniques for size lower bounds

I feasible interpolation [Kraj́ıček 97]

I size-width technique [Ben-Sasson & Wigderson 01]

I game-theoretic techniques [Pudlák & Impagliazzo 00, . . . ]

Another central measure

I space of resolution [Esteban & Torán 99, . . . ]

I lower bound method for space again via width
[Atserias & Dalmau 08]
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Why hardness measures?

Correspondence to SAT solvers

I size = running time

I space = memory consumption

What constitutes a good hardness measure?

I Which measure makes a formula hard/easy for a SAT solver?

I What is a good representation of boolean functions?

I How can this be best measured?
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Hardness measures studied here for clause sets F

Size measures

I depth dep(F ) of best resolution refutation of F

I hardness hd(F ) (Horton-Strahler number)

Width measures

I (symmetric) width wid(F )

I asymmetric width awid(F )

Clause-space measures

I semantic space css(F )

I resolution space crs(F )

I tree-resolution space cts(F )
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Our objectives and contributions

Provide unified characterisations for hardness measures

I via Prover-Delayer games

I via partial assignments

I for arbitrary clause sets: unsatisfiable and satisfiable

This allows

I elegant proofs of basic relations between different hardness
measures

I exact relations between the different measures

I generalised version of Atserias and Dalmau’s result on the
relation between resolution width and space
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From unsatisfiable to satisfiable formulas

I Let h0 be a measure for unsatisfiable clause sets,
which does not increase by applying partial assignments.

I Extend h0 to arbitrary clause sets F by

h(F ) = max{ h0(F �α) : α partial assignment, F �α unsatisfiable }

Motivation

I understand performance of SAT solvers on satisfiable instances

I obtain ‘good’ SAT representations of boolean functions
[Gwynne & Kullmann 13/14]

I ‘good’ = not too big and of good inference power

I all unsatisfiable instantiations should be easy for SAT solvers

I related notions in randomised context considered before
[Achlioptas, Beame, Molloy 04]
[Alekhnovich, Hirsch, Itsykson 05] [Ansótegui et al. 08]
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Size hardness measures: dep(F ) and hd(F )

Depth

I dep(F ) = minimal height of a resolution tree for F

Hardness

I hd(F ) = height of the biggest full binary tree which can be
embedded into each tree-like resolution refutation of F

I concept reinvented several times,
e.g. as Horton-Strahler number of a tree

Basic relations

I hd(F ) ≤ dep(F )

I 2hd(F ) ≤ tree-size(F ) ≤ (#var(F ) + 1)hd(F ) [Kullmann 99]
[Pudlák & Impagliazzo 00]
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Width hardness measures: wid(F ) and awid(F )

I width of a clause = # of its literals

I width of a proof = maximal width of its clauses

(Symmetric) width

I wid(F ) = minimum width of a resolution refutation of F

I in each resolution step, both parents have width ≤ k

I F needs to have width ≤ k

Asymmetric width

I in each resolution step, one of the parents has width ≤ k

I awid(F ) = minimum k s.th. F has such a resolution refutation

I applies also to formulas with large width
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Width vs. size

Short proofs are narrow

I seminal size-width technique

size(F ) = 2
Ω
(

(wid(F )−initial width(F ))2

#var(F )

)

[Ben-Sasson & Wigderson 01]

I generalises to asymmetric width

e
awid(F )2

8 · #var(F ) < size(F ) < 6 ·#var(F )awid(F ) + 2

[Kullmann 04]



11

Game characterisations

Game-theoretic techniques for lower bounds

I classic Prover-Delayer game characterises hd(F )
[Pudlák & Impagliazzo 00]

I asymmetric Prover-Delayer game characterises tree-size(F )
[B., Galesi, Lauria 13]

I these games only work for unsatisfiable clause sets

Here

I a simplified Prover-Delayer game characterising hd(F ) for
arbitrary clause sets

I a game for asymmetric width awid(F )
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Prover-Delayer game for hd(F )

I The two players play in turns. Delayer starts.

I Initially, the assignment θ is empty.

I A move of Delayer extends θ to θ′ ⊇ θ.
I A move of Prover extends θ to θ′ ⊃ θ such that

I θ′ is a satisfying assignment for F , or
I #var(θ′) = #var(θ) + 1

I The game ends as soon as

1. θ falsifies a clause in F , or
2. θ satisfies F

I Delayer scores

I as many points as variables have been assigned by Prover
in case 1.

I 0 points in case 2.
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The characterisation

Theorem
There is a strategy of Delayer which can always achieve hd(F )
many points, while Prover can always avoid that Delayer gets
more than hd(F ) points.

Sketch of proof

Strategy of Prover:

I If F �θ is satisfiable, then extend θ to a satisfying assignment.

I Otherwise choose x and a ∈ {0, 1} s.t. hd(F �θ∪{x=a}) is
minimal.

Strategy of Delayer:

I Initially choose θ such that F �θ is unsatisfiable and hd(F �θ)
is maximal.

I For all other moves, if there are unassigned variables x and
a ∈ {0, 1} with hd(F �θ∪{x=a}) ≤ hd(F �θ)− 2
extend θ by x = 1− a.
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Extending the game to characterise asymmetric width

Key idea

I Prover can also forget some information.

I For simplicity, we only consider the unsatisfiable case.

I Can be extended to satisfiable clauses as in previous game.

The game

I The players play in turns. Delayer starts. θ is empty.

I Delayer extends θ to θ′ ⊇ θ.

I Prover chooses some θ′ compatible with θ such that
|var(θ′) \ var(θ)| = 1.

I The game ends as soon as θ falsifies a clause in F .

I Delayer scores the maximum of #var(θ′) chosen by Prover.

I Prover must play in such a way that the game is finite.
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Results

Theorem

I There is a strategy of Delayer which guarantees
at least awid(F ) many points against every Prover.

I There is a strategy of Prover which guarantees
at most awid(F ) many points for every Delayer.

Relation between the games

Consider the awid-game, when restricted in such a way that
Prover must always choose some θ′ with #var(θ′) > #var(θ).
This game is precisely the hd-game.

Corollary

For all clause sets F we have awid(F ) ≤ hd(F ).
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Characterisations by sets of partial assignments

Our starting point

Characterisation of width wid(F ) by partial assignments
[Atserias & Dalmau 08]

We devise a hierarchy of conditions for

asymmetric width awid(F ) k-consistency
hardness hd(F ) weak k-consistency
depth dep(F ) bare k-consistency

Relation to games

I Sets of partial assignments give good Delayer strategies.

I Resolution proofs give good Prover strategies.
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An example: asymmetric width

Definition
A set P of partial assignments for a clause set F is k-consistent if:

1. No ϕ ∈ P falsifies F .

2. Let ϕ ∈ P and x be a variable not assigned in ϕ.
Then for all ψ ⊆ ϕ with #var(ψ) < k and both a ∈ {0, 1}
there is ϕ′ ∈ P with ψ ∪ {x = a} ⊆ ϕ′.

Theorem
Let F be unsatisfiable. Then awid(F ) > k if and only if
there exists a k-consistent set of partial assignments for F .
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Space measures I

Semantic space

A semantic k-sequence for F is a sequence F1, . . . ,Fp such that:

1. F1 = >
2. for i = 2, . . . , p, either Fi−1 |= Fi (inference), or

there is C ∈ F with Fi = Fi−1 ∪ {C} (axiom download).

3. ⊥ ∈ Fp

4. |Fi | ≤ k for i = 1, . . . , p

css(F ) = min{ k : F has a complete semantic k-sequence }
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Space measures II

Resolution space

A resolution k-sequence for F is a sequence F1, . . . ,Fp such that:

1. F1 = >
2. for i = 2, . . . , p, either Fi \ Fi−1 = {C} where C is a resolvent

of two clauses in Fi , or
there is C ∈ F with Fi = Fi−1 ∪ {C} (axiom download).

3. ⊥ ∈ Fp

4. |Fi | ≤ k for i = 1, . . . , p

crs(F ) = min{ k : F has a resolution k-sequence }

Tree-resolution space

extra condition:

I If C D
E with C ,D ∈ Fi−1 then C ,D /∈ Fi .

cts(F ) = min{ k : F has a tree k-sequence }
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Relations

Basic relations
For all clause sets F

I css(F ) ≤ crs(F ) ≤ cts(F ) by definition

I crs(F ) ≤ 3 css(F )− 2 similar to [Alekhnovich et al. 02]

I cts(F ) = hd(F ) + 1 [Kullmann 99]

Space and width

For an unsatisfiable CNF F of width r

I wid(F ) ≤ crs(F ) + r − 1 [Atserias & Dalmau 08]

A generalisation

For all clause sets F

I awid(F ) ≤ css(F )
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Towards the full picture

awid css crs

wid

cts hd dep
∼ ∗3

hd
= −1

awid hd

Characterisations

by Prover-Delayer games

awid hd dep

by sets of partial assignments

wid
[Atserias & Dalmau 08]

cts
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Summary

Characterisations towards a unified framework for hardness
measures

I via Prover-Delayer games

I sets of partial assignments

I for arbitrary clause sets: unsatisfiable and satisfiable

Main advantages

I elegant proofs of relations between hardness measures

I exact relations between the different measures
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Open questions

Provide characterisations for

I semantic space

I resolution space

Exact relations

I Does awid(F ) + 1 ≤ css(F ) hold?

I Is crs = css?

Develop a general theory of hardness measures

I applicable to other proof systems than resolution


