Unified characterisations of resolution hardness measures

Olaf Beyersdorff ¹ Oliver Kullmann ²

¹ School of Computing, University of Leeds, UK

 $^{^{\}rm 2}$ Computer Science Department, Swansea University, UK

Hardness measures for resolution

Historically first and best studied

- size of resolution proofs
- tree-like size of resolution proofs

Many ingenious techniques for size lower bounds

- ► feasible interpolation [Krajíček 97]
- size-width technique [Ben-Sasson & Wigderson 01]
- ▶ game-theoretic techniques [Pudlák & Impagliazzo 00, ...]

Another central measure

- space of resolution [Esteban & Torán 99, ...]
- lower bound method for space again via width [Atserias & Dalmau 08]

Why hardness measures?

Correspondence to SAT solvers

- ► size = running time
- space = memory consumption

What constitutes a good hardness measure?

- ▶ Which measure makes a formula hard/easy for a SAT solver?
- What is a good representation of boolean functions?
- ▶ How can this be best measured?

Hardness measures studied here for clause sets F

Size measures

- ▶ depth dep(F) of best resolution refutation of F
- ▶ hardness hd(F) (Horton-Strahler number)

Width measures

- ▶ (symmetric) width wid(F)
- asymmetric width awid(F)

Clause-space measures

- semantic space css(F)
- resolution space crs(F)
- tree-resolution space cts(F)

Our objectives and contributions

Provide unified characterisations for hardness measures

- via Prover-Delayer games
- via partial assignments
- for arbitrary clause sets: unsatisfiable and satisfiable

This allows

- elegant proofs of basic relations between different hardness measures
- exact relations between the different measures
- generalised version of Atserias and Dalmau's result on the relation between resolution width and space

From unsatisfiable to satisfiable formulas

- Let h_0 be a measure for unsatisfiable clause sets, which does not increase by applying partial assignments.
- \blacktriangleright Extend h_0 to arbitrary clause sets F by

$$h(F) = \max\{ h_0(F \upharpoonright_{\alpha}) : \alpha \text{ partial assignment, } F \upharpoonright_{\alpha} \text{unsatisfiable} \}$$

Motivation

- understand performance of SAT solvers on satisfiable instances
- obtain 'good' SAT representations of boolean functions [Gwynne & Kullmann 13/14]
- 'good' = not too big and of good inference power
- ▶ all unsatisfiable instantiations should be easy for SAT solvers
- related notions in randomised context considered before [Achlioptas, Beame, Molloy 04]
 [Alekhnovich, Hirsch, Itsykson 05] [Ansótegui et al. 08]

Hardness measures studied here for clause sets F

Size measures

- ▶ depth dep(F) of best resolution refutation of F
- ▶ hardness hd(F) (Horton-Strahler number)

Width measures

- ▶ (symmetric) width wid(F)
- asymmetric width awid(F)

Clause-space measures

- semantic space css(F)
- resolution space crs(F)
- tree-resolution space cts(F)

Size hardness measures: dep(F) and hd(F)

Depth

ightharpoonup dep(F) = minimal height of a resolution tree for F

Hardness

- hd(F) = height of the biggest full binary tree which can be embedded into each tree-like resolution refutation of F
- concept reinvented several times,e.g. as Horton-Strahler number of a tree

Basic relations

- ▶ $hd(F) \leq dep(F)$
- $ho 2^{\mathsf{hd}(F)} \le \mathsf{tree\text{-}size}(F) \le (\#\mathsf{var}(F) + 1)^{\mathsf{hd}(F)}$ [Kullmann 99] [Pudlák & Impagliazzo 00]

Width hardness measures: wid(F) and awid(F)

- ▶ width of a clause = # of its literals
- width of a proof = maximal width of its clauses

(Symmetric) width

- ightharpoonup wid(F) = minimum width of a resolution refutation of F
- ▶ in each resolution step, both parents have width $\leq k$
- ▶ F needs to have width $\leq k$

Asymmetric width

- ▶ in each resolution step, one of the parents has width $\leq k$
- ightharpoonup awid(F) = minimum k s.th. F has such a resolution refutation
- applies also to formulas with large width

Width vs. size

Short proofs are narrow

seminal size-width technique

$$\mathsf{size}(F) = 2^{\Omega\left(\frac{(\mathsf{wid}(F) - \mathsf{initial}\ \mathsf{width}(F))^2}{\#\mathsf{var}(F)}\right)}$$

[Ben-Sasson & Wigderson 01]

generalises to asymmetric width

$$e^{\frac{\operatorname{awid}(F)^2}{8 \cdot \#\operatorname{var}(F)}} < \operatorname{size}(F) < 6 \cdot \#\operatorname{var}(F)^{\operatorname{awid}(F) + 2}$$

[Kullmann 04]

Game characterisations

Game-theoretic techniques for lower bounds

- classic Prover-Delayer game characterises hd(F)
 [Pudlák & Impagliazzo 00]
- asymmetric Prover-Delayer game characterises tree-size(F)
 [B., Galesi, Lauria 13]
- these games only work for unsatisfiable clause sets

Here

- a simplified Prover-Delayer game characterising hd(F) for arbitrary clause sets
- ▶ a game for asymmetric width awid(F)

Prover-Delayer game for hd(F)

- The two players play in turns. Delayer starts.
- ▶ Initially, the assignment θ is empty.
- ▶ A move of Delayer extends θ to $\theta' \supseteq \theta$.
- ▶ A move of Prover extends θ to $\theta' \supset \theta$ such that
 - \triangleright θ' is a satisfying assignment for F, or
 - #var $(\theta') = \#$ var $(\theta) + 1$
- ▶ The game ends as soon as
 - 1. θ falsifies a clause in F, or
 - 2. θ satisfies F
- Delayer scores
 - as many points as variables have been assigned by Prover in case 1.
 - 0 points in case 2.

The characterisation

Theorem

There is a strategy of Delayer which can always achieve hd(F) many points, while Prover can always avoid that Delayer gets more than hd(F) points.

Sketch of proof

Strategy of Prover:

- ▶ If $F \upharpoonright_{\theta}$ is satisfiable, then extend θ to a satisfying assignment.
- ▶ Otherwise choose x and $a \in \{0,1\}$ s.t. $hd(F \upharpoonright_{\theta \cup \{x=a\}})$ is minimal.

Strategy of Delayer:

- ▶ Initially choose θ such that $F \upharpoonright_{\theta}$ is unsatisfiable and $hd(F \upharpoonright_{\theta})$ is maximal.
- ▶ For all other moves, if there are unassigned variables x and $a \in \{0,1\}$ with $\mathsf{hd}(F \upharpoonright_{\theta \cup \{x=a\}}) \le \mathsf{hd}(F \upharpoonright_{\theta}) 2$ extend θ by x = 1 a.

Extending the game to characterise asymmetric width

Key idea

- Prover can also forget some information.
- ▶ For simplicity, we only consider the unsatisfiable case.
- ▶ Can be extended to satisfiable clauses as in previous game.

The game

- ▶ The players play in turns. Delayer starts. θ is empty.
- ▶ Delayer extends θ to $\theta' \supseteq \theta$.
- ▶ Prover chooses some θ' compatible with θ such that $|var(\theta') \setminus var(\theta)| = 1$.
- ▶ The game ends as soon as θ falsifies a clause in F.
- ▶ Delayer scores the maximum of $\#var(\theta')$ chosen by Prover.
- Prover must play in such a way that the game is finite.

Results

Theorem

- ► There is a strategy of Delayer which guarantees at least awid(F) many points against every Prover.
- There is a strategy of Prover which guarantees at most awid(F) many points for every Delayer.

Relation between the games

Consider the awid-game, when restricted in such a way that Prover must always choose some θ' with $\# \text{var}(\theta') > \# \text{var}(\theta)$. This game is precisely the hd-game.

Corollary

For all clause sets F we have $awid(F) \le hd(F)$.

Characterisations by sets of partial assignments

Our starting point

Characterisation of width wid(F) by partial assignments [Atserias & Dalmau 08]

We devise a hierarchy of conditions for

asymmetric width $\operatorname{awid}(F)$ k-consistency hardness $\operatorname{hd}(F)$ weak k-consistency depth $\operatorname{dep}(F)$ bare k-consistency

Relation to games

- Sets of partial assignments give good Delayer strategies.
- Resolution proofs give good Prover strategies.

An example: asymmetric width

Definition

A set P of partial assignments for a clause set F is k-consistent if:

- 1. No $\varphi \in P$ falsifies F.
- 2. Let $\varphi \in P$ and x be a variable not assigned in φ . Then for all $\psi \subseteq \varphi$ with $\# \text{var}(\psi) < k$ and both $a \in \{0,1\}$ there is $\varphi' \in P$ with $\psi \cup \{x = a\} \subseteq \varphi'$.

Theorem

Let F be unsatisfiable. Then $\operatorname{awid}(F) > k$ if and only if there exists a k-consistent set of partial assignments for F.

Space measures I

Semantic space

A semantic k-sequence for F is a sequence F_1, \ldots, F_p such that:

- 1. $F_1 = \top$
- 2. for $i=2,\ldots,p$, either $F_{i-1}\models F_i$ (inference), or there is $C\in F$ with $F_i=F_{i-1}\cup\{C\}$ (axiom download).
- 3. $\bot \in F_p$
- 4. $|F_i| \le k$ for i = 1, ..., p

 $css(F) = min\{k : F \text{ has a complete semantic } k\text{-sequence}\}$

Space measures II

Resolution space

A resolution k-sequence for F is a sequence F_1, \ldots, F_p such that:

- 1. $F_1 = \top$
- 2. for $i=2,\ldots,p$, either $F_i\setminus F_{i-1}=\{C\}$ where C is a resolvent of two clauses in F_i , or there is $C\in F$ with $F_i=F_{i-1}\cup\{C\}$ (axiom download).
- 3. $\perp \in F_p$
- 4. $|F_i| \le k$ for i = 1, ..., p

$$crs(F) = min\{k : F \text{ has a resolution } k\text{-sequence}\}$$

Tree-resolution space

extra condition:

▶ If $\frac{C}{E}$ with $C, D \in F_{i-1}$ then $C, D \notin F_i$. cts(F) = min{ k : F has a tree k-sequence}

Relations

Basic relations

For all clause sets F

- ▶ $css(F) \le crs(F) \le cts(F)$
- similar to [Alekhnovich et al. 02]

 $crs(F) \leq 3 css(F) - 2$

Similar to [Meximovier et al. 02]

 $\mathsf{cts}(F) = \mathsf{hd}(F) + 1$

[Kullmann 99]

by definition

Space and width

For an unsatisfiable CNF F of width r

 $ightharpoonup wid(F) \le crs(F) + r - 1$

[Atserias & Dalmau 08]

A generalisation

For all clause sets F

▶ $awid(F) \le css(F)$

Towards the full picture

Characterisations

by Prover-Delayer games

by sets of partial assignments

Summary

Characterisations towards a unified framework for hardness measures

- via Prover-Delayer games
- sets of partial assignments
- for arbitrary clause sets: unsatisfiable and satisfiable

Main advantages

- elegant proofs of relations between hardness measures
- exact relations between the different measures

Open questions

Provide characterisations for

- semantic space
- resolution space

Exact relations

- ▶ Does awid(F) + 1 ≤ css(F) hold?
- ▶ Is crs = css?

Develop a general theory of hardness measures

applicable to other proof systems than resolution