Conditional Lower Bounds for Failed Literals and Related Techniques

Matti Järvisalo Janne H. Korhonen*

University of Helsinki, Department of Computer Science, and Helsinki Institute for Information Technology HIIT

1.

Background: Formula Simplification

simplification techniques

2.

Main Result: Lower Bound for Failed Literal Existence

Unit propagation

$$\begin{array}{c} (\ell_1 \vee \ldots \vee \ell_k \vee \ell) \\ (\neg \ell_1), (\neg \ell_2), \ldots, (\neg \ell_k) \end{array} \end{array} \xrightarrow{} (\ell)$$

- apply until fixpoint
- we write $F \vdash_{up} (\ell)$ if (ℓ) can be derived from F by repeated application of unit resolution rule

Unit propagation

$$\begin{array}{c} (\ell_1 \vee \ldots \vee \ell_k \vee \ell) \\ (\neg \ell_1), (\neg \ell_2), \ldots, (\neg \ell_k) \end{array} \right\} \longrightarrow (\ell)$$

- apply until fixpoint
- we write $F \vdash_{up} (\ell)$ if (ℓ) can be derived from F by repeated application of unit resolution rule
- Failed literals
 - a literal $\ell \in F$ is a failed literal if $F \land (\ell) \vdash_{up} (\ell'), (\neg \ell')$ for some $\ell' \in F$
 - replace F with $F_{\wedge}(\neg \ell)$ if ℓ is a failed literal

Failed literal existence problem

Input: CNF formula *F* Problem: Decide whether *F* has a failed literal Failed literal existence problem

```
Input: CNF formula F
```

Problem: Decide whether F has a failed literal

- Upper bounds (assuming bounded clause width)
 - unit propagation O(n+m)
 - failed literal existence O(n(n+m))
 - failed literal elimination fixpoint $O(n^2(n+m))$
 - Can we do any better?

Theorem. If failed literal existence can solved in

$O((n+m)^{2-\varepsilon})$

time on Horn-3-CNFs for some $\varepsilon > 0$, then CNF-SAT can be solved in time

$2^{(1-\epsilon/2)n}$ poly(n,m)

on formulas of unrestricted clause length.

- Recall that CNF formula is Horn if each clause has at most one unnegated variable
- Horn-SAT is solvable in linear time

Theorem. If failed literal existence can solved in

$O((n+m)^{2-\varepsilon})$

time on Horn-3-CNFs for some $\varepsilon > 0$, then CNF-SAT can be solved in time

$2^{(1-\epsilon/2)n}$ poly(n,m)

on formulas of unrestricted clause length.

- We do not know how to solve CNF-SAT in time $2^{(1-\epsilon)n} \operatorname{poly}(n,m)$ for any $\epsilon > 0$
- This would give **exponential** speed-up for CNF-SAT!

The Strong Exponential Time Hypothesis

 $\lim_{n\to\infty} \inf \{\delta : k \text{-SAT can be solved in time } O(2^{\delta n})\} = 1$

CNF-SAT with unrestricted clause length cannot be solved in time $2^{(1-\epsilon)n} \operatorname{poly}(n,m)$ for any $\epsilon > 0$

[Calabro, Impagliazzo, and Paturi 2009]

Corollary. Failed literal existence restricted to Horn-3-CNFs cannot be solved in time $O((n+m)^{2-\varepsilon})$ for any $\varepsilon > 0$ unless SETH fails. **Corollary.** Failed literal existence restricted to Horn-3-CNFs cannot be solved in time $O((n+m)^{2-\varepsilon})$ for any $\varepsilon > 0$ unless SETH fails.

- Compare with other similar results: for any $\varepsilon > 0$ we cannot solve
 - k-dominating set for $k \ge 3$ in time $O((n+m)^{k-\varepsilon})$
 - 2-SAT with O(n) clauses and two unrestricted length clauses in time $O(n^{2-\varepsilon})$ [Pătraşcu and Williams 2010]
 - Local alignment of two binary strings in time $O(n^{2-\varepsilon})$ [Abboud, Vassilevska Williams, and Weimann 2014]

3.

Proof of the Failed Literal Existence Lower Bound

3a.

Proof Overview

Theorem. If failed literal existence can solved in $O((n+m)^{2-\varepsilon})$

time on Horn-3-CNFs for some $\varepsilon > 0$, then CNF-SAT can be solved in time

$2^{(1-\varepsilon/2)n}$ poly(*n*,*m*)

on formulas of unrestricted clause length.

3b.

Reduction from CNF-SAT to Failed Literal Elimination

input formula *F n* variables

~ $2^{n/2}$ partial truth assignments in Q

4.

Extensions and Open Questions

Extensions of the Main Result

- Assuming SETH, for any $\varepsilon > 0$ we cannot solve
 - asymmetric tautology existence on Horn-3-CNFs in time O((n+m)^{2-ε})
 - asymmetric literal existence on Horn-3-CNFs in time $O((n+m)^{2-\varepsilon})$
 - singleton arc consistency on (3,2)-CSPs in time $O((n+m)^{2-\varepsilon})$
- *k*-step lookahead lower bound?
 - Fix values for *k* variables, do unit propagation
 - We can probably show lower bound vs. $O((n+m)^{k+1-\varepsilon})$ time

Open Questions

- Failed literal existence on 2-CNFs?
 - CNF version requires clause length 3
 - CSP version requires domain size 3
 - Maybe one **can** do better on 2-CNFs?
- Failed literal elimination fixpoint?
 - Lower bound $O((n+m)^{3-\varepsilon})$?

Thank you!

Questions, comments?

Definitions: Asymmetric Tautologies and Literals

- clause $C = (\ell_1 \lor \ldots \lor \ell_k) \in F$ is an **asymmetric tautology** if $(F \setminus C) \land (\neg \ell_1) \land \ldots \land (\neg \ell_k) \vdash_{up} (\ell'), (\neg \ell')$ for some $\ell' \in F$
 - replace F with $F \setminus C$
- literal ℓ in a clause $C \in F$ is an **asymmetric literal** if $F_{\wedge}(\ell) \vdash_{up} (\ell')$ for some $\ell' \in C \setminus \{\ell\}$
 - replace F with $(F \setminus C) \land (C \setminus \ell)$