Solving Sparse Instances of Max SAT via Width Reduction and Greedy Restriction

Takayuki Sakai (Kyoto University)
Joint work with
Kazuhsa Seto (Seikei University)
Suguru Tamaki (Kyoto University)
This Talk

- Theoretical Aspects
 - Worst case upper bound
 - Moderately exponential time algorithm

- Practical Aspects (not our scope)
 - Some branching rules (*width reduction & greedy restriction*) might be worth implementing
 - Sparse instances might be easy
Outline

- Introduction
 - Previous and our results
 - Motivation for sparse instances
- Previous Exponential Time Algorithms
 - Memorization
 - Branch and Bound
- Our Algorithm and its Analysis
 - Width reduction
 - Greedy restriction
- Summary
Input: a set of clauses with weights
\[\{ (C_1, w_1), (C_2, w_2), \ldots, (C_m, w_m) \} \]
- \(C_i \): conjunction of literals, \(w_i \): positive value

Output: Maximum total weight of clauses satisfied

Example
\[\{ (x_1 \lor x_2, 1), (x_1 \lor \overline{x}_2, 4), (\overline{x}_1 \lor x_2, 5), (\overline{x}_1 \lor \overline{x}_2, 2), (x_1 \lor x_3, 3) \} \]
Maximum Satisfiability (Max SAT)

\[\{(x_1 \lor x_2,1), (x_1 \lor \bar{x}_2,4), (\bar{x}_1 \lor x_2,5), (\bar{x}_1 \lor \bar{x}_2,2), (x_1 \lor x_3,3)\}\]

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_1 \lor x_2)</th>
<th>(x_1 \lor \bar{x}_2)</th>
<th>(\bar{x}_1 \lor x_2)</th>
<th>(\bar{x}_1 \lor \bar{x}_2)</th>
<th>(x_1 \lor x_3)</th>
<th>total weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>14 (max)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>13</td>
</tr>
</tbody>
</table>
Complexity of Max SAT

Facts
- Max SAT is NP-hard
- Exhaustive Search: \(O(2^n) \)

Question
- Moderately exponential time algorithm?

\[\exists \mu > 0 \text{ s.t. } \text{Max SAT} \in \text{DTIME} \left[2^{(1-\mu)n} \right] ? \]
Previous Results

<table>
<thead>
<tr>
<th>Running Time</th>
<th>Problem</th>
<th>Space</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(2^{0.4414k}))</td>
<td>Max SAT</td>
<td>Poly.</td>
<td>[BG12]</td>
</tr>
<tr>
<td>(O(2^{0.1000l}))</td>
<td>Max 2-SAT</td>
<td>Poly.</td>
<td>[GH03]</td>
</tr>
<tr>
<td>(O(2^{0.1450l}))</td>
<td>Max SAT</td>
<td>Poly.</td>
<td>[BR99]</td>
</tr>
<tr>
<td>(O(2^{0.1583m}))</td>
<td>Max 2-SAT</td>
<td>Poly.</td>
<td>[GS12]</td>
</tr>
<tr>
<td>(O(2^{0.1901m}))</td>
<td>Max 2-CSP</td>
<td>Poly.</td>
<td>[GS12]</td>
</tr>
<tr>
<td>(O(2^{0.4057m}))</td>
<td>Max SAT</td>
<td>Poly.</td>
<td>[CK04]</td>
</tr>
<tr>
<td>(O(2^{0.7909n}))</td>
<td>Max 2-SAT</td>
<td>Exp.</td>
<td>[Koi06] [Wil05]</td>
</tr>
</tbody>
</table>

- k: objective value
- l: length of instance
- m: # constraints
- n: # variables
Previous and Our Results

Sparse instance: \#clauses = cn

<table>
<thead>
<tr>
<th></th>
<th>Weight of clause</th>
<th>Running Time</th>
<th>Space</th>
<th>det./rand. type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dantsin and Wolpert 2006</td>
<td>1</td>
<td>$O\left(2^{\left(1-\Omega\left(\frac{1}{c \log c}\right)\right)n}\right)$</td>
<td>Exp.</td>
<td>deterministic memorization</td>
</tr>
<tr>
<td>Kulikov and Kutzkov 2007</td>
<td>unbounded</td>
<td>$O\left(2^{\left(1-\Omega\left(\frac{1}{2^{O(c)}}\right)\right)n}\right)$</td>
<td>Poly.</td>
<td>deterministic branch & bound</td>
</tr>
<tr>
<td>Our Result 1</td>
<td>unbounded</td>
<td>$O\left(2^{\left(1-\Omega\left(\frac{1}{c^2 \log^2 c}\right)\right)n}\right)$</td>
<td>Poly.</td>
<td>deterministic branch & bound</td>
</tr>
<tr>
<td>Our Result 2</td>
<td>unbounded</td>
<td>$O\left(2^{\left(1-\Omega\left(\frac{1}{c \log^3 c}\right)\right)n}\right)$</td>
<td>Poly.</td>
<td>randomized branch & bound</td>
</tr>
</tbody>
</table>
Best upper bounds for Max k-SAT (any instances)
- Max 2-SAT : $O\left(1.732^n\right)$ [Williams 2004]
- Max 3-SAT : $O\left(2^n\right)$
 (cf. k-SAT : $O\left(2^{\left(1-1/k\right)n}\right)$)

Strong Exponential Time Hypothesis [CIP09]
“SAT (without restriction on clause length) cannot be solved in time $2^{\left(1-\varepsilon\right)n}$ for constant $\varepsilon > 0$”

... and Max SAT is at least as difficult as SAT
If we consider linear size instances (\#caluses = \(cn\)), then

\[
\text{CNF-SAT}_{cn} \in \text{DTIME} \left[2^{(1-\mu_c)n} \right]
\]

\[
\text{Max SAT}_{cn} \in \text{DTIME} \left[2^{(1-\mu_c)n} \right]
\]

\(\mu_c > 0\) : constant

Our Goal
Design an exponentially faster algorithm for linear size instances of Max SAT
Outline

- Introduction
 - Previous and our results
 - Motivation for sparse instances
- Previous Exponential Time Algorithms
 - Memorization
 - Branch and Bound
- Our Algorithm and its Analysis
 - Width reduction
 - Greedy restriction
- Summary
Algorithms for Max SAT

- Complete Algorithm
 - Branch and bound
 - Memorization (often exponential space)
 - Split and list (often exponential space)
 - Reduction to SAT (#variables increases, e.g. $n \log n$)
 - ...

- Incomplete Algorithm
 - Branch and bound with heuristics
 - Local search
 - ...

Previous and Our Results

Sparse instance: \#clauses = \(cn \)

<table>
<thead>
<tr>
<th></th>
<th>Weight of clause</th>
<th>Running Time</th>
<th>Space</th>
<th>det./rand. type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dantsin and Wolpert 2006</td>
<td>1</td>
<td>(\mathcal{O}\left(2^{\Omega(1/c \log c)}n\right))</td>
<td>Exp.</td>
<td>deterministic memorization</td>
</tr>
<tr>
<td>Kulikov and Kutzkov 2007</td>
<td>unbounded</td>
<td>(\mathcal{O}\left(2^{\Omega(1/2^{O(c)})}n\right))</td>
<td>Poly.</td>
<td>deterministic branch & bound</td>
</tr>
<tr>
<td>Our Result 1</td>
<td>unbounded</td>
<td>(\mathcal{O}\left(2^{\Omega(1/c^2 \log^2 c)}n\right))</td>
<td>Poly.</td>
<td>deterministic branch & bound</td>
</tr>
<tr>
<td>Our Result 2</td>
<td>unbounded</td>
<td>(\mathcal{O}\left(2^{\Omega(1/c \log^3 c)}n\right))</td>
<td>Poly.</td>
<td>randomized branch & bound</td>
</tr>
</tbody>
</table>
Ideas of Algorithm by Dantsin and Wolpert

- Make many small instances by partial assignments
- Find each small instance and its optimal value from prepared database (memorization)
- Running Time = \#partial assignments + preparing database
Previous and Our Results

Sparse instance: \#clauses = cn

<table>
<thead>
<tr>
<th></th>
<th>Weight of clause</th>
<th>Running Time</th>
<th>Space</th>
<th>det./rand. type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dantsin and Wolpert 2006</td>
<td>1</td>
<td>$O\left(2^{\left(1-\Omega\left(1/c \log c\right)\right)n}\right)$</td>
<td>Exp.</td>
<td>deterministic memorization</td>
</tr>
<tr>
<td>Kulikov and Kutzkov 2007</td>
<td>unbounded</td>
<td>$O\left(2^{\left(1-\Omega\left(1/2^{O(c)}\right)\right)n}\right)$</td>
<td>Poly.</td>
<td>deterministic branch & bound</td>
</tr>
<tr>
<td>Our Result 1</td>
<td>unbounded</td>
<td>$O\left(2^{\left(1-\Omega\left(1/c^2 \log^2 c\right)\right)n}\right)$</td>
<td>Poly.</td>
<td>deterministic branch & bound</td>
</tr>
<tr>
<td>Our Result 2</td>
<td>unbounded</td>
<td>$O\left(2^{\left(1-\Omega\left(1/c \log^3 c\right)\right)n}\right)$</td>
<td>Poly.</td>
<td>randomized branch & bound</td>
</tr>
</tbody>
</table>
Idea #1 (high frequency)
If there is a literal x occurring at least d times in the instance
($d=d(c)$: some parameter)
⇒ Recursively solve two cases $x=0$ and $x=1$
(This case: we can reduce the size of instance efficiently)
Branch and Bound Algorithm based on two ideas:

Idea #2 (pruning)
Otherwise, consider Max of #satisfiable clauses including x_1

\[
(x_1 \lor x_2 \lor x_3), (x_1 \lor \overline{x_2} \lor \overline{x_3}), (x_1 \lor \overline{x_2} \lor x_3), (x_1 \lor \overline{x_2}), (x_1 \lor x_2 \lor \overline{x_3}), (\overline{x_1} \lor x_2)
\]

- $x_1 = 1 \implies$ OPT is 6 when $x_2 = 1$
- $x_1 = 0 \implies$ OPT is 5 when $x_2 = 0, x_3 = 0/1$

$(x_1, x_2) = (0, 1)$ is always worse than $(x_1, x_2) = (1, 1)$

We only have to examine $x_1 = 1$ and $(x_1, x_2) = (0, 0)$
(This case: we can reduce search space efficiently)
Outline

- Introduction
 - Previous and our results
 - Motivation for sparse instances
- Previous Exponential Time Algorithms
 - Memorization
 - Branch and Bound
- Our Algorithm and its Analysis
 - Width reduction
 - Greedy restriction
- Summary
Branch and Bound Algorithm based on two ideas:

Idea #1 (width reduction)
If there is a clause C of width $> k$ in the instance
($k = k(c):$ some parameter)
⇒ Apply clause-shortening algorithm
(producing two sub-problems)

Idea #2 (greedy restriction)
Otherwise, pick a variable x that occurs most frequently
⇒ Recursively solve two cases $x=0$ and $x=1$
Details of Our Deterministic Algorithm

- **Width reduction**
 - Max SAT instance \Rightarrow a set of Max k-SAT instances

- **Greedy restriction**
 - Max k-SAT is a special case of Max Formula SAT
 - Greedy restriction algorithm for (Max) formula SAT
Width Reduction

- **Key Idea:** reduce a given Max SAT instance to the union of Max-k-SAT instances.
 - **Using clause shortening algorithm!**

 \[C = (x_1 \lor x_2 \lor \cdots \lor x_k \lor x_{k+1} \lor \cdots) \]

 - **Branch #1:** Pick up the first k literals and remove other variables
 \[C'' = (x_1 \lor x_2 \lor \cdots \lor x_k) \]

 - **Branch #2:** Set the first k literals to be false.
 \[C''' = (x_{k+1} \lor \cdots) \text{ and } x_1 = 0, x_2 = 0, \ldots, x_k = 0 \]
Width Reduction

\[C = (x_1 \lor x_2 \lor \cdots \lor x_k \lor x_{k+1} \lor \cdots) \]

Branch #1: Pick up the first k literals and remove other variables

\[C'' = (x_1 \lor x_2 \lor \cdots \lor x_k) \]

Branch #2: Set the first k literals to be false.

\[C''' = (x_{k+1} \lor \cdots) \text{ and } x_1 = 0, x_2 = 0, \ldots, x_k = 0 \]

• OPT of original instance = max of OPTs of two new instances
Width Reduction

\[C = (x_1 \lor x_2 \lor \cdots \lor x_k \lor x_{k+1} \lor \cdots) \]

Branch #1: Pick up the first k literals and remove other variables

\[C' = (x_1 \lor x_2 \lor \cdots \lor x_k) \]

Branch #2: Set the first k literals to be false.

\[C'' = (x_{k+1} \lor \cdots) \text{ and } x_1 = 0, x_2 = 0, \ldots, x_k = 0 \]

- Each Branch #1 reduce one clause of width > k
 - After cn times, all clauses have length at most k
- Each Branch #2 reduce k variables
 - After n/2k times, the number of variables is at most n/2
Width Reduction

\(k=2 \) : when we reduce original instance to Max 2-SAT instances

Input \(\{ (x_1 \lor \overline{x}_2 \lor x_3 \lor x_4 \lor x_5), \ldots, (\overline{x}_2 \lor x_3), \ldots \} \)

\(C_1 = (x_1 \lor \overline{x}_2 \lor x_3 \lor x_4 \lor \overline{x}_5) \)

Branch 1 \(C_1' = (x_1 \lor \overline{x}_2) \)

Branch 2

\(x_1=0, x_2=1 \)

\(C_1'' = (x_3 \lor x_4 \lor \overline{x}_5) \)

\(C_5 = (x_3) \)
Details of Our Deterministic Algorithm

- **Width reduction**
 - Max SAT instance \Rightarrow a set of Max k-SAT instances

- **Greedy restriction**
 - Max k-SAT is a special case of Max Formula SAT
 - Greedy restriction algorithm for (Max) formula SAT
Max formula SAT

- We need some definitions
 - De Morgan formula
 - formula SAT
 - Max formula SAT
- Binary Tree
 - Internal node: AND, OR
 - NOT appears in only leaves
 - Size = #leaves

$\#\text{variables} = 3$
Size = 5
De Morgan formula SAT

Input: De Morgan formula
Output: yes if formula is satisfiable
Max De Morgan formula SAT

- Input: a set of weighted De Morgan formula
 \[\Phi = \{ (\phi_1, w_1), (\phi_2, w_2), \ldots, (\phi_m, w_m) \}, \text{ each } w_i > 0 \]
- Output: Maximum total weight of constraints satisfied
Max De Morgan formula SAT

- Max De Morgan formula SAT
 - Input: a set of weighted De Morgan formula
 \[\Phi = \{ (\phi_1, w_1), (\phi_2, w_2), \ldots, (\phi_m, w_m) \}, \text{ each } w_i > 0 \]
 - Output: Maximum total weight of constraints satisfied

- Max k-SAT is a special case of Max formula SAT
 - Each De Morgan formula has size at most k
 - Each De Morgan formula has only OR label
Details of Our Algorithm

- **Width reduction**
 - Max SAT instance \(\Rightarrow\) a set of Max \(k\)-SAT instances

- **Greedy restriction**
 - Max \(k\)-SAT is a special case of Max Formula SAT
 - Greedy restriction algorithm for (Max) formula SAT
Greedy Restriction and Simplification

Greedy Restriction = Assign 0/1 to \(x \) which occurs most frequently

Simplification = Simplify the formula via the following rules

1. \(1 \land \psi \to \psi \), \(0 \lor \psi \to \psi \)
2. \(0 \land \psi \to 0 \), \(1 \lor \psi \to 1 \)
3. \(z \land \psi \to z \land \psi[z = 1] \)
4. \(z \lor \psi \to z \lor \psi[z = 0] \)

(\(\psi \): any subformula of \(\phi \))
Example of Simplification

(1) $1 \land \psi \rightarrow \psi, \ 0 \lor \psi \rightarrow \psi$

(2) $0 \land \psi \rightarrow 0, \ 1 \lor \psi \rightarrow 1$

(3) $z \land \psi \rightarrow z \land \psi[z = 1]$

(4) $z \lor \psi \rightarrow z \lor \psi[z = 0]$

(ψ: any subformula of ϕ)
Example of Greedy Restriction

(1) $1 \land \psi \rightarrow \psi$, $0 \lor \psi \rightarrow \psi$
(2) $0 \land \psi \rightarrow 0$, $1 \lor \psi \rightarrow 1$
(3) $z \land \psi \rightarrow z \land \psi[z = 1]$
(4) $z \lor \psi \rightarrow z \lor \psi[z = 0]$

(ψ: any subformula of ϕ)

For each formula, we use simplification rules.
The complexity of Max formula SAT

Lemma

Max formula SAT with cn size can be solved by deterministic polynomial space algorithm in time

$$O\left(2^{\left(1-\Omega\left(\frac{1}{c^2}\right)\right)n}\right)$$

Corollary

Max k-SAT with cn clauses (kcn literals) can be solved by deterministic polynomial space algorithm in time

$$O\left(2^{\left(1-\Omega\left(\frac{1}{k^2c^2}\right)\right)n}\right)$$
Running time analysis of combining width reduction and k-SAT algorithm was given by [Sch05, CIP06]

- Basically we replace k-SAT algorithm by Max k-SAT algorithm

Our Result 1

Max SAT with cn clauses can be solved by deterministic polynomial space algorithm in time

$$O\left(2^{\left(1-\Omega(1/c^2 \log^2 c)\right)n}\right)$$
Outline

- Introduction
 - Previous and our results
 - Motivation for sparse instances
- Previous Exponential Time Algorithms
 - Memorization
 - Branch and Bound
- Our Algorithm and its Analysis
 - Width reduction
 - Greedy restriction
- Summary
Previous and Our Results

Sparse instance: \#clauses = cn

<table>
<thead>
<tr>
<th></th>
<th>Weight of clause</th>
<th>Running Time</th>
<th>Space</th>
<th>det./rand. type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dantsin and Wolpert 2006</td>
<td>1</td>
<td>$O\left(2^{\Omega\left(1/c\log c\right)}n\right)$</td>
<td>Exp.</td>
<td>deterministic memorization</td>
</tr>
<tr>
<td>Kulikov and Kutzkov 2007</td>
<td>unbounded</td>
<td>$O\left(2^{\Omega\left(1/2^{O(c)}\right)}n\right)$</td>
<td>Poly.</td>
<td>deterministic branch & bound</td>
</tr>
<tr>
<td>Our Result 1</td>
<td>unbounded</td>
<td>$O\left(2^{\Omega\left(1/c^2\log^2 c\right)}n\right)$</td>
<td>Poly.</td>
<td>deterministic branch & bound</td>
</tr>
<tr>
<td>Our Result 2</td>
<td>unbounded</td>
<td>$O\left(2^{\Omega\left(1/c\log^3 c\right)}n\right)$</td>
<td>Poly.</td>
<td>randomized branch & bound</td>
</tr>
</tbody>
</table>
Some Remarks

- Our randomized algorithm uses random restriction instead of greedy restriction.

- Our algorithms can count the number of optimal assignments.

- Our algorithms can handle hard constraints (partial Max SAT).
Future Work

- Improve the applicable size?
 - Now, applicable for size $O(n^{1.5})$ in time $O(2^n - \omega(\log n))$
 - De Morgan Formula SAT Algorithm is applicable to
 - Deterministic: $O(n^{2.5-o(1)})$ size
 - Chen, Kabanets, Kolokolova, Shaltiel, Zuckerman (ECCC 2012)
 - Randomized: $O(n^{3-o(1)})$ size
 - Komargodski, Raz, Tal (FOCS 2013)

- Fast Max 2-SAT Algorithm with Polynomial Space
- Non-Trivial Algorithm for Max 3-SAT

Thank you for your attention!