Practical SAT Solving
Lecture 4
Carsten Sinz, Tomáš Balyo | May 14, 2019

INSTITUTE FOR THEORETICAL COMPUTER SCIENCE
What is Planning

Informal Definition
Planning is the process of finding a plan, i.e., a sequence of actions that changes the state of the world from some initial state to a desired (goal) state.

Examples
- Delivering some packages
- Building a submarine
- Robot motion planning
- Fulfilling a scientific goal by an autonomous space probe
Trucking Example

Initial State
- There is a truck and a package in city A
- There is a package in city B

Goal
- There are two packages in city C

Possible Actions
- (Un)loading packages from/on the truck, driving between cities
A planning problem instance Π is a tuple $(\mathcal{X}, \mathcal{A}, s_I, s_G)$ where

- \mathcal{X} is a set of multivalued variables with finite domains.
 - each variable $x \in \mathcal{X}$ has a finite possible set of values $\text{dom}(x)$
- \mathcal{A} is a set actions. Each action $a \in \mathcal{A}$ is a tuple $(\text{pre}(a), \text{eff}(a))$
 - $\text{pre}(a)$ is a set of preconditions of action a
 - $\text{eff}(a)$ is a set of effects of action a
 - both are sets of equalities of the form $x = v$ where $x \in \mathcal{X}$ and $v \in \text{dom}(x)$
- s_I is the initial state, it is a full assignment of the variables in \mathcal{X}
- s_G is the set of goal conditions, it is a set of equalities (same as $\text{pre}(a)$ and $\text{eff}(a)$)
World State

A state is full assignment of the variables in \(\mathcal{X} \) (each variable \(x \in \mathcal{X} \) has exactly one value assigned from its domain \(\text{dom}(x) \)). A state can be represented as a set of equalities.

The initial state \(s_I \) is a state. A state \(s \) is a goal state if \(s_G \subseteq s \).

Applicable Actions

An action \(a \in \mathcal{A} \) is applicable in the state \(s \) if \(\text{pre}(a) \subseteq s \).

Applying an Action

When an action \(a \in \mathcal{A} \) is applied in the state \(s \) it changes to the state \(s' \) such that \(\text{eff}(a) \subseteq s' \) and the difference between \(s \) and \(s' \) is minimal (only variables used in \(\text{eff}(a) \) are changed).
A Plan

A plan for P for a planning problem $\Pi = (\mathcal{X}, A, s_I, s_G)$ is sequence of actions $a_1, a_2, \ldots a_n$ such that

- $\forall i \ a_i \in A$
- let $s_1 = s_I$ and $s_{i+1} = apply(s_i, a_i)$
- a_i is applicable in s_i
- $s_G \subseteq s_{n+1}$

If $P = \{a_1, a_2, \ldots a_n\}$ then n is the length of the plan P.

An optimal plan is a plan of shortest length.
variables: Truck Location T, $dom(T) = \{A, B, C\}$, Package Locations P_1 and P_2, $dom(P_1) = dom(P_2) = \{A, B, C, T\}$

Initial state: $\{T = A, P_1 = A, P_2 = B\}$

Goal: $\{P_1 = C, P_2 = C\}$

Actions: $load(P_i, L) = (\{T = L, P_i = L\}, \{P_i = T\})$
$unload(P_i, L) = (\{T = L, P_i = T\}, \{P_i = L\})$
$drive(L_1, L_2) = (\{T = L_1\}, \{T = L_2\})$ where $i \in \{1, 2\}$ and $L, L_1, L_2 \in \{A, B, C\}$
Trucking Example

World State
- $T = A, P_1 = A, P_2 = B$
- $T = A, P_1 = T, P_2 = B$
- $T = B, P_1 = T, P_2 = B$
- $T = B, P_1 = T, P_2 = T$
- $T = C, P_1 = T, P_2 = T$
- $T = C, P_1 = C, P_2 = C$

The Plan
- $load(P_1, A)$
- $drive(A, B)$
- $load(P_2, B)$
- $drive(B, C)$
- $unload(P_1, C), unload(P_1, C)$
Sokoban Example

- **Initial State**
 - There is a worker and a bunch of boxes

- **Goal**
 - All the boxes must be in goal positions

- **Possible Actions**
 - moving with the worker
 - pushing a box

- **Forbidden**
 - to pull boxes
 - move through walls or boxes

http://wiki.pe/Sokoban
Encoding Sokoban

- Variables – For each location we have variable, the domain is WORKER, BOX, EMPTY
- Initial State – assign values based on the picture
- Goal – goal position variables have value BOX
- Actions – move and push for each possible location
- \(\text{push}(L_1, L_2, L_3) = (\{L_1 = W, L_2 = B, L_3 = E\}, \{L_1 = E, L_2 = W, L_3 = B\})\)
- \(\text{move}(L_1, L_2) = (\{L_1 = W, L_2 = E\}, \{L_1 = E, L_2 = W\})\)
Is that even possible?
Encoding Planning into CNF

- We cannot encode the existence of a plan in general
- But we can encode the existence of a plan up to some length
Encoding Planning into CNF

- We cannot encode the existence of a plan in general
- But we can encode the existence of plan up to some length

SATPLAN Algorithm

- INPUT: a planning problem Π
- OUTPUT: a plan P

for $m := 1, 2, \ldots$ do
 $F = \text{encodePlanExists}(\Pi, m)$
 if $\text{solver.isSat}(F)$ then
 $\text{return} \ \text{extractPlan}(\Pi, m, \text{solver.solution})$
The Task

Given a planning problem instance $\Pi = (X, A, s_i, s_G)$ and $k \in \mathbb{N}$ construct a CNF formula F such that F is satisfiable if and only if there is a plan of length k for Π.

We will need two kinds of variables:

- Variables to encode the actions: a_t^i for each $t \in \{1, \ldots, k\}$ and $a^i \in A$.
- Variables to encode the states: $b_t^x=v$ for each $t \in \{1, \ldots, k+1\}$, $x \in X$ and $v \in \text{dom}(x)$.

In total we have $k|A| + (k+1)\sum_{x \in X} |\text{dom}(x)|$ variables.
Encoding Planning into CNF

The Task

Given a planning problem instance $\Pi = (\mathcal{X}, \mathcal{A}, s_i, s_G)$ and $k \in \mathbb{N}$ construct a CNF formula F such that F is satisfiable if and only if there is a plan of length k for Π.

We will need two kinds of variables

- Variables to encode the actions:
 a_i^t for each $t \in \{1, \ldots, k\}$ and $a_i \in \mathcal{A}$

- Variables to encode the states:
 $b_{x=v}^t$ for each $t \in \{1, \ldots, k+1\}$, $x \in \mathcal{X}$ and $v \in \text{dom}(x)$

In total we have $k|\mathcal{A}| + (k + 1) \sum_{x \in \mathcal{X}} \text{dom}(x)$ variables
We will need 8 kinds of clauses

- The first state is the initial state
- The goal conditions are satisfied in the end
- Each state variable has at least one value
- Each state variable has at most one value
- If an action is applied it must be applicable
- If an action is applied its effects are applied in the next step
- State variables cannot change without an action between steps
- At most one action is used in each step
Encoding Planning into CNF

The first state is the initial state

\[(b^1_x = v) \]
\[\forall (x = v) \in s_I \] \hspace{1cm} (1)

The goal conditions are satisfied in the end

\[(b^{n+1}_x = v) \]
\[\forall (x = v) \in s_G \] \hspace{1cm} (2)
Encoding Planning into CNF

Each state variable has at least one value

\[(b^t_{x=v_1} \lor b^t_{x=v_2} \lor \cdots \lor b^t_{x=v_d})\]
\[\forall x \in X, \text{dom}(x) = \{v_1, v_2, \ldots, v_d\}, \forall t \in \{1, \ldots, k + 1\}\]

Each state variable has at most one value

\[(-b^t_{x=v_i} \lor -b^t_{x=v_j})\]
\[\forall x \in X, v_i \neq v_j, \{v_i, v_j\} \subseteq \text{dom}(x), \forall t \in \{1, \ldots, k + 1\}\]
Encoding Planning into CNF

If an action is applied it must be applicable

\[\neg a^t \lor b^t_{x=v} \]
\[\forall a \in A, \forall (x = v) \in \text{pre}(a), \forall t \in \{1, \ldots, k\} \tag{5} \]

If an action is applied its effects are applied in the next step

\[\neg a^t \lor b^{t+1}_{x=v} \]
\[\forall a \in A, \forall (x = v) \in \text{eff}(a), \forall t \in \{1, \ldots, k\} \tag{6} \]
Encoding Planning into CNF

State variables cannot change without an action between steps

\[
(¬b_{x=v}^{t+1} \lor b_{x=v}^t \lor a_{s_1}^t \lor \cdots \lor a_{s_j}^t)
\]

\(\forall x \in X, \forall v \in \text{dom}(x), \text{support}(x = v) = \{a_{s_1}, \ldots, a_{s_j}\}, \forall t \in \{1, \ldots, k\}\)

(7)

By \text{support}(x = v) \subseteq \mathcal{A} we mean the set of supporting actions of the assignment \(x = v\), i.e., the set of actions that have \(x = v\) as one of their effects.
At most one action is used in each step

\[(¬a_i^t \lor ¬a_j^t)\]

\[∀\{a_i, a_j\} ⊆ A, a_i ≠ a_j \forall t ∈ \{1, \ldots, k\}\]
The Task Solved

Given a planning problem instance $\Pi = (X, A, s_I, s_G)$ and $k \in \mathbb{N}$ a CNF formula F, which is a conjunction of all the above described clauses is satisfiable if and only if there is plan of length k for Π.

Optimizations

- Better encoding of at-most-one
- Allowing several actions in each step
- Encoding variable transitions instead of variable values
Let M be a non-deterministic Turing machine that accepts an input x in $P(|x|)$ time, where P is a polynomial function.

- M on x will use at most $P(|x|)$ tape entries
- M on input x as a SAS+ planning problem Π
 - State variables are the state of the TM and the $P(|x|)$ tape entries
 - The transition function table is encoded as actions
 - Initial state: tape contains input, TM state is initial state
 - Goal state: TM state is an accepting state

Encode Π for plan length $k = P(|x|)$ into a CNF formula F_k

- F_k is SAT if and only if M accepts x in $P(|x|)$ time
- F_k has polynomial size w.r.t. to M and x
Planning with incremental SAT

- we are solving a sequence of similar formulas
- how do they differ?
- how to use an incremental solver in this case?
Planning with incremental SAT

- The formula F_k is the subset of F_{k+1} except for the goal clauses.
- The goal clauses will be added as removable (in this case, since they are unit, we can just assume them)

Incremental SATPLAN Algorithm

<p>| INPUT: a planning problem Π |</p>
<table>
<thead>
<tr>
<th>OUTPUT: a plan P</th>
</tr>
</thead>
</table>

```python
S = initSolver()
addInitialStateClauses(S)
for m := 1, 2, \ldots \ do
    addClausesForStep(m, S)
    assumeGoalConditionsAtStep(m, S)
if satisfiable(S) then return extractPlan(\Pi, m, getValues(S))
```
The DIMSPEC format

- Many other (than planning) problems have a similar structure
 - for example bounded model checking
- They can be specified using the DIMSPEC format
- DIMSPEC is four cnf formulas, where the "$p\text{ cnf }<n> <m>$" line is replaced by:
 - $i\text{ cnf }<n> <m>$ for the initial state specification (n variables)
 - $g\text{ cnf }<n> <m>$ for the goal state specification (n variables)
 - $u\text{ cnf }<n> <m>$ for the universal state specification (n variables)
 - $t\text{ cnf }<n> <m>$ for the specification of the transition (between two neighboring states) ($2n$ variables)
The DIMSPEC format example

c this is an example of a dimspec file
i cnf 5 3
-1 2 0
2 3 -5 0
4 0
g cnf 5 1
5 0
u cnf 5 2
-1 2 3 0
-3 4 5 0
t cnf 10 2
-2 7 8 0
-4 9 10 0
Planning as DIMSPEC

- Initial state specification clauses: \((b_{x=v})\) added \(\forall (x = v) \in S_I\)
- Goal state specification clauses: \((b_{x=v})\) added \(\forall (x = v) \in S_G\)
- Universal state specification clauses:
 - \((b_{x=v_1} \lor b_{x=v_2} \lor \cdots \lor b_{x=v_d})\) added \(\forall x \in X\) where \(\text{dom}(x) = \{v_1, v_2, \ldots, v_d\}\) – at least one value
 - \((b_{x=i} \lor b_{x=j})\) added \(\forall x \in X\) \(i \neq j \in \text{dom}(x)\) – at most one value
 - \((\overline{a} \lor b_{x=v})\) added \(\forall a \in A, \forall (x = v) \in \text{pre}(a)\) – action preconditions
 - \((\overline{a_i} \lor \overline{a_j})\) added \(\forall i \neq j\) – at most one action
- Transition specification clauses
 - \((\overline{a} \lor b'_{x=v})\) added \(\forall a \in A, \forall (x = v) \in \text{eff}(a)\) – action effects
 - \((b'_{x=v} \lor b_{x=v} \lor a_{s_1} \lor \cdots \lor a_{s_j})\) added \(\forall x \in X, \forall v \in \text{dom}(x)\) where \(\text{support}(x = v) = \{a_{s_1}, \ldots, a_{s_j}\}\) – values cannot change without a reason
Solving DIMSPEC

- Same as solving planning with incremental SAT

The Basic DISMPEC Solving Algorithm

- INPUT: a DIMSPEC problem
- OUTPUT: a truth assignment

\[S = \text{initSolver()} \]
\[\text{addInitialStateClauses}(S) \]
\[\text{for } m := 1, 2, \ldots \text{ do} \]
\[\quad \text{addUniversalConditionsWithRenaming}(m, S) \]
\[\quad \text{if } m > 1 \text{ then } \text{addTransitionalConditionsWithRenaming}(m, S) \]
\[\quad \text{assumeGoalConditionsWithRenaming}(m, S) \]
\[\quad \text{if satisfiable}(S) \text{ then } \text{return} \text{ getValues}(S) \]