Practical SAT Solving

Lecture 11

Carsten Sinz, Tomas Balyo | July 17, 2018
Lecture Outline

- Derandomizing Local Search
- SAT Upper Bounds
- Covering Codes
Repetition: Local Search

```latex
Maybe[Assignment] GSAT(ClauseSet S)
{
    for \( i = 1 \) to MAX_TRIES do {
        \( \alpha = \) random-assignment to variables in S
        for \( j = 1 \) to MAX_FLIPS do {
            if ( \( \alpha \) satisfies all clauses in S ) return \( \alpha \)
            \( x = \) variable that produces least number of unsatisfied clauses when flipped
            flip \( x \)
        }
    }
    return Nothing // no solution found
}
```
Open questions

- How often should the inner/outer loop be repeated?
- How good are the chances to find a satisfying assignment?
- Can the algorithm be modified to prove unsatisfiability?
- Is there a general upper bound for deciding SAT that is better than 2^n?

```c
Maybe[Assignment] GSAT(ClauseSet S)
{
    for i = 1 to MAX_TRIES do {
        $\alpha$ = random-assignment to variables in S
        for j = 1 to MAX_FLIPS do {
            if ($\alpha$ satisfies all clauses in S) return $\alpha$
            $x$ = variable that produces least number of unsatisfied clauses when flipped
            flip $x$
        }
    }
    return Nothing  // no solution found
}
```
Complexity of k-SAT: Upper Bounds

<table>
<thead>
<tr>
<th>3-SAT</th>
<th>4-SAT</th>
<th>5-SAT</th>
<th>6-SAT</th>
<th>type</th>
<th>ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.782</td>
<td>1.835</td>
<td>1.867</td>
<td>1.888</td>
<td>det.</td>
<td>[PPZ97]</td>
</tr>
<tr>
<td>1.618</td>
<td>1.839</td>
<td>1.928</td>
<td>1.966</td>
<td>det.</td>
<td>[MS85]</td>
</tr>
<tr>
<td>1.588</td>
<td>1.682</td>
<td>1.742</td>
<td>1.782</td>
<td>prob.</td>
<td>[PPZ97]</td>
</tr>
<tr>
<td>1.579</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>det.</td>
<td>[Sch92]</td>
</tr>
<tr>
<td>1.505</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>det.</td>
<td>[Kul99]</td>
</tr>
<tr>
<td>1.481</td>
<td>1.6</td>
<td>1.667</td>
<td>1.75</td>
<td>det.</td>
<td>[DGH+02]</td>
</tr>
<tr>
<td>1.362</td>
<td>1.476</td>
<td>1.569</td>
<td>1.637</td>
<td>prob.</td>
<td>[PPSZ98]</td>
</tr>
<tr>
<td>1.334</td>
<td>1.5</td>
<td>1.6</td>
<td>1.667</td>
<td>prob.</td>
<td>[Sch99]</td>
</tr>
<tr>
<td>1.3302</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>prob.</td>
<td>[HSSW02]</td>
</tr>
<tr>
<td>1.3290</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>prob.</td>
<td>[BS03]</td>
</tr>
<tr>
<td>1.324</td>
<td>1.474</td>
<td>-</td>
<td>-</td>
<td>prob.</td>
<td>[*]</td>
</tr>
</tbody>
</table>

Algorithm of Dantsin et al.

```plaintext
Maybe[Assignment] Local-Search(ClauseSet S)
{
    for i = 1 to MAX_TRIES do
        α = random-assignment
        for j = 1 to MAX_FLIPS do
            if α satisfies all clauses in S return α
            choose variable x to flip
            flip x
        return Nothing
}
```

Variant of local search algorithmus (as above)

- **Input:** Formula in \(k\)-CNF with \(n \) variables.

Idea:

1. Make inner loop deterministic: systematically check all assignments in the „neighborhood“ of \(α \).
2. Choose starting assignment \(α \) in outer loop deterministically.
Idea 1: Hamming Ball Algorithm

Hamming distance between two assignments \(\alpha, \beta \):

Def.: \[d(\alpha,\beta) := |\{ x \mid \alpha(x) \neq \beta(x) \}| \]

Ex.: \(\alpha=(0,1,1,0,0), \beta=(1,0,1,0,1), \ d(\alpha,\beta) = 3 \)

Hamming ball of radius \(r \) around \(\alpha \):

Def.: \[H(\alpha, r) := \{ \beta \mid d(\alpha,\beta) \leq r \} \]

Volume \(V(r) \) of the Hamming ball: (given \(n \) variables, i.e. assignments are vectors of length \(n \)):

\[
V(r) := |H(\alpha, r)| = \sum_{i=0}^{r} \binom{n}{i} \quad \text{independent of } \alpha.
\]

Define normalized radius \(\rho := r/n \) (i.e. \(0 \leq \rho \leq 1 \))
Illustration: Hamming Ball

Example: n=4

Ball around $\alpha=\langle 0001 \rangle$ with radius 1 and radius 2.
Hamming Ball Algorithm

- Known approximation of the Hamming ball volume (from information theory, Shannon) for $\rho \leq 1/2$:

$$\frac{1}{\sqrt{8np(1 - \rho)}} 2^{h(\rho)n} \leq V(r) \leq 2^{h(\rho)n}$$

where $h(\rho) := -\rho \log \rho - (1 - \rho) \log(1 - \rho)$ (Entropy function; log = logarithm for base 2).

- i.e.: $V(\rho n) \approx 2^{h(\rho)n}$ (within polynomial factor)
Search in Hamming Ball

```plaintext
Maybe[Assignment] HB-Search(\alpha, r)
{
    if(\alpha \models F) then return \alpha
    if (r = 0) return Nothing
    choose C=(L_1 \lor \ldots \lor L_k) with \alpha(C)=0
    for i = 1 to k do
        \alpha_i = \alpha with \alpha(L_i)=1
        \beta = HB-Search(\alpha_i, r-1)
        if(\beta \neq Nothing) return \beta
    return Nothing
}
```

- **Run time HB-Search:** k^r

- **Note:** k^r can be considerably smaller than $V(r)$.
 - E.g.: $k = 3$, $r = n/2$:

 \[V(r) = 2^{n-1}, \quad k^r = 3^{n/2} \approx 1.7321^n \]
Search in Hamming Ball

- HB-Search provides simple deterministic algorithm for 3-SAT:
 - Execute two HB searches around $\alpha_0=(0,...,0)$ and $\alpha_1=(1,...,1)$ with radius $n/2$.
 - Runtime (as seen): 1.7321^n

- Can we improve that?
 - Idea: Choose radius $r = \rho n$ with $\rho<1/2$.
 - Of course, more than two starting points for α in the outer loop are needed then.
Probabilistic Variant of HB LS Algorithm

```haskell
Maybe[Assignment] Local-Search-HB-Prob
{
    for i = 1 to w do
        αᵢ = random-assignment
        β = HB-Search(αᵢ, ρ ⋅ n)
        if(β ≠ Nothing) return β
    return Nothing
}
```

- Choose αᵢ uniformly and independently at random from the 2^n possibilities, w iterations.
- Runtime: $w \cdot k^{ρn}$.
- Goal: Choose w and ρ such that (a) error probability is neglectably small and (b) runtime is optimized.
Probabilistic Algorithm: Error Probability (I)

- Only possible error: F satisfiable, algorithm doesn’t find a satisfying assignment
- Assumption: F satisfiable, $\alpha \models F$.
- HB-Search($\alpha_i, \rho n$) finds α, if $\alpha \in H(\alpha_i, \rho n)$.
- Probability for that: $V(\rho n) \cdot 2^{-n}$
 - With Shannon approximation $V(\rho n) \approx 2^{h(\rho)n}$: probability approx.

 $2^{h(\rho)n} \cdot 2^{-n} = 2^{h(\rho)n-n} = 2^{-(1-h(\rho))n}$
 - Probability that α is not found in w iterations:

 $$(1 - 2^{-(1-h(\rho))n})^w \leq e^{-w \cdot 2^{-(1-h(\rho))n}}$$

(with approximation $1+x \leq e^x$ for all x)
Error Probability and Runtime Optimization

- Probability that α is not found in w iterations:

$$\left(1 - 2^{-(1-h(\rho))}\right)^w \leq e^{-w \cdot 2^{-(1-h(\rho))}}$$

(with approximation $1+x \leq e^x$ for all x)

- If error shall be below e^{-c}: $w = c \cdot 2^{(1-h(\rho))n}$ iterations needed.

- Runtime thus: (within polynomial factor):

$$w \cdot k^\rho n \approx \left(2^{(1-h(\rho))} \cdot k^\rho\right)^n = \left(2 \cdot \rho^\rho \cdot (1 - \rho)^{(1-\rho)} \cdot k^\rho\right)^n$$

(with def. entropy: $h(\rho) = - \rho \log \rho - (1 - \rho) \log(1 - \rho)$)

- Minimize runtime by differentiating (*) w.r.t. ρ and solving for ρ.

Result: $\rho = 1/(k+1)$.

- Substituting that in (*) provides runtime:

$$\left(\frac{2k}{k+1}\right)^n$$
Result for Probabilistic Algorithm

- Runtime: $\left(\frac{2k}{k+1} \right)^n$

- Base for small values of k:

<table>
<thead>
<tr>
<th>k</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2k/(k+1)$</td>
<td>1.5</td>
<td>1.6</td>
<td>1.66667</td>
<td>1.71429</td>
<td>1.75</td>
</tr>
</tbody>
</table>

- Next step: Derandomize this algorithm (i.e. outer loop)
Covering Codes

- **Derandomization**: Deterministic algorithm for selecting starting assignments α_i.

- **Definition**: A set C of assignments is a covering code of radius r, if for each assignment α: $\alpha \in H(\gamma, r)$ for at least one $\gamma \in C$.

- **Example**: Covering code of radius 1.
Construction of Covering Codes

- Problem is a special case of SET-COVER:
 - Given: Set S and family $F \subseteq 2^S$ of subsets of S
 - Wanted: Subset $C \subseteq F$, which covers S, i.e., $S = UC$
 - Goal: Minimize $|C|$

- Greedy algorithm provides $\log|S|$-approximation for SET-COVER
Construction of Covering Codes

- Problem is a special case of SET-COVER.

Given: Set S and family $F \subseteq 2^S$ of subsets of S

Wanted: Subset $C \subseteq F$, which covers S, i.e., $S = UC$

Goal: Minimize $|C|$

Greedy algorithm provides $\log|S|$-approximation for SET-COVER.
Greedy algorithm for SET-COVER

1. Set $C = \emptyset$.
2. As long as there are not-covered elements in S:
 a) Choose $c \in F$, covering largest number of yet not-covered elements from S.
 b) Add c to C.
3. If $\cup C = S$, then C is a solution; otherwise none exists.

Known:
Result of greedy alg. is $\log|S|$-approximation for SET-COVER, i.e.,
$|C| \leq \log|S| \cdot |C^*|$, where C^* is optimal solution.
(in our case: $|S| = 2^n$, i.e. $\log|S| \in O(n)$)

Needed for approximation of $|C|$:
Upper bound for C^*
Upper Bound for C^*

- Obviously, for all covering codes C (for a given radius r) the following holds: $|C| \geq \frac{2^n}{V(r)}$.
- Next lemma: optimal code is at most by a factor of n larger.
Lemma: Size of Optimal Covering Code

For all n and $r = \rho n$ with $0 \leq \rho \leq 1/2$, there is a covering code for radius r

of size $s := n \cdot \sqrt{8n\rho(1 - \rho)} \cdot 2^{(1-h(\rho))n}$.

Proof: probabilistic method

A randomly selected set of s assignments is with high probability a
covering code. Thus, in particular, such a code must exist.
Proof of Lemma

- \(\beta \) fixed assignment, \(\alpha \) selected at random.
- Then: \(\beta \in H(\alpha, r) \) with probability \(V(r)/2^n \).
- \(C \): set of \(s \) independently selected random assignments.
- Then: Probability that \(\beta \) is not covered by \(C \):

\[
\left(1 - \frac{V(r)}{2^n}\right)^s \leq e^{-s \frac{V(r)}{2^n}} \leq e^{-s \frac{2^{h(\rho) - 1}n}{\sqrt{8n\rho(1 - \rho)}}} \leq e^{-n}
\]

(with approximation \(1 + x \leq e^x \) for all \(x \), \(V(r) \geq \frac{2^{h(\rho)n}}{\sqrt{8n\rho(1 - \rho)}} \))

and \(s = n \cdot \sqrt{8n\rho(1 - \rho)} \cdot 2^{(1 - h(\rho))n} \)

- In total: probability that \(C \) is covering code:

\[
\geq 1 - 2^n \cdot e^{-n}
\]

(approaches 1 for \(n \to \infty \))
Analysis of the Greedy Algorithm

- Optimal code: $|C^*| \leq s$
- Greedy algorithm:
 - $|C| \leq O(n) \cdot s = O((5/2)^n) \cdot 2^{(1-h(\rho))n}$
 - Runtime of greedy algorithm: 2^{3n} (without proof)
- Result: $|C|$ ok, but runtime of SET-COVER algorithm too high!
- Idea:
 - Reduce runtime by allowing increased $|C|$.

Carsten Sinz, Tomas Balyo – SAT Solving
Block Codes

Idea:
- Let C be a covering code of radius r for n variables
- Obtain covering code C^d of radius $d \cdot r$ for $d \cdot n$ variables by repeating covering code C for d times

Example:

- $d=4$, $|C|=3$: covering code for $4n$ variables with $|C|^4$ elements.

In general:
- Block code C^d has size $|C|^d$ and radius $r \cdot d$.
Deterministic Hamming-Ball Algorithm

- Choose \(d=6 \) and use block code \(C^6 \).
- Generate covering code \(C \) for \(n/6 \) variables with radius \(\rho n/6 \) using greedy SET-COVER algorithm
 - Runtime: \(2^{3n/6} \leq 1.414^n \)
- Size of covering code \(C^6 \):
 \[
 O \left(\frac{n^{5/2}}{6} \cdot 2^{(1-h(\rho))n/6} \right)^6 = O(n^{15}) \cdot 2^{(1-h(\rho))n}
 \]
 - Same as non-blockcode, ignoring polynomial factor
- Complete run time of algorithm:
 1. Generating covering code: \(O(1.414^n) \) (once before start of Hamming-ball search)
 2. Hamming-ball search with radius \(r = n/(1+k) \): \(O(2k/(k+1))^n \)
 --> The latter dominates for \(k \geq 3 \), thus: \(O(2k/(k+1))^n \) (i.e. same run-time as probabilistic algorithm, e.g. \(1.5^n \) for 3-SAT)
Further Improvements

- Hamming-ball search can also be done in time 2.848^r (instead of 3^r).
 - Refined algorithm: Dantsin et al., 2002.

- Therefore:
 - Run-time of 1.481^n for deterministic 3-SAT algorithm (best upper bound for deterministic 3-SAT so far)