Lecture Outline

- VSIDS heuristic
- Clause forgetting
- Parallel SAT Solving
CDCL Algorithm

input: Formula F in CNF
output: SAT / UNSAT

1. $dl \leftarrow 0$ \hspace{1cm} // initialize decision level
2. $V \leftarrow \emptyset$ \hspace{1cm} // initialize trail (variable assignment)

3. while not all variables assigned do

 4. if $\text{unit_propagation}(F, V) == \text{CONFLICT}$ then

 5. $(c, bl) \leftarrow \text{analyze conflict}$
 6. if $bl < 0$ then

 7. return UNSAT

 else

 8. add_clause(c)
 9. backtrack to bl
 10. $dl \leftarrow bl$

 else

 12. $(x, b) \leftarrow \text{pick branching literal}$
 13. $dl \leftarrow dl + 1$
 14. $V \leftarrow V \cup \{(x, b)\}$

16. return SAT
Variable Selection in CDCL

- Previous heuristics (MOMS, Bohm’s, etc.): global, “static”
 - E.g. MOMS: \(S(x) = (f^*(x) + f^*(\overline{x})) \times 2^k + (f^*(x) \times f^*(\overline{x})) \)
 - \(f^*(x) \) is the number of occurrences of \(x \) in the smallest not yet satisfied clauses, \(k \) is a parameter
 - static: \(S(x) \) often computed only at root node of search
 - global: based on whole CNF
Variable Selection in CDCL

- Previous heuristics (MOMS, Bohm’s, etc.): global, “static”
 - E.g. MOMS: \[S(x) = \left(f^*(x) + f^*(\overline{x}) \right) \times 2^k + \left(f^*(x) \times f^*(\overline{x}) \right) \]
 - \(f^*(x) \) is the number of occurrences of \(x \) in the smallest not yet satisfied clauses, \(k \) is a parameter
 - static: \(S(x) \) often computed only at root node of search
 - global: based on whole CNF

- Idea for CDCL: Make heuristics more “focused”
 - try to find small unsatisfiable subsets
 - prefer variables that occurred in a recent conflict
VSIDS Heuristic

- **VSIDS: Variable State Independent Decaying Sum**
 - **General approach:** Compute score for each variable, select variable with highest score
 - Initial variable score is number of literal occurrences
 - New conflict clause c: Score is incremented for all variables in c
 - Periodically, divide all scores by a constant

First presented in SAT solver Chaff, 2001 [1]
VSIDS (or a variant of it) implemented in most current CDCL solvers
VSIDS Heuristic

- **VSIDS: Variable State Independent Decaying Sum**
 - **General approach:** Compute score for each variable, select variable with highest score
 - Initial variable score is number of literal occurrences
 - New conflict clause c: Score is incremented for all variables in c
 - Periodically, divide all scores by a constant

- First presented in SAT solver Chaff, 2001 [1]
VSIDS Heuristic

- **VSIDS: Variable State Independent Decaying Sum**
 - **General approach:** Compute score for each variable, select variable with highest score
 - Initial variable score is number of literal occurrences
 - New conflict clause c: Score is incremented for all variables in c
 - Periodically, divide all scores by a constant

- First presented in SAT solver Chaff, 2001 [1]

- VSIDS (or a variant of it) implemented in most current CDCL solvers
VSIDS Example

Initial F:

$\{x_1, x_4\}$
$\{x_1, \overline{x_3}, \overline{x_8}\}$
$\{x_1, x_8, x_{12}\}$
$\{x_2, x_{11}\}$
$\{\overline{x_7}, \overline{x_3}, x_9\}$
$\{\overline{x_7}, x_8, x_9\}$
$\{x_7, x_8, \overline{x_{10}}\}$

Scores:

4 : x_8
3 : x_1, x_7
2 : x_3
1 : $x_2, x_4, x_9, x_{10}, x_{11}, x_{12}$
VSIDS Example

Initial F:
\[
\{x_1, x_4\} \\
\{x_1, \overline{x_3}, \overline{x_8}\} \\
\{x_1, x_8, x_{12}\} \\
\{x_2, x_{11}\} \\
\{\overline{x_7}, x_3, x_9\} \\
\{x_7, x_8, x_9\} \\
\{x_7, x_8, \overline{x_{10}}\}
\]

Scores:
4 : x_8
3 : x_1, x_7
2 : x_3
1 : $x_2, x_4, x_9, x_{10}, x_{11}, x_{12}$

F with new learned clause added:
\[
\{x_1, x_4\} \\
\{x_1, \overline{x_3}, \overline{x_8}\} \\
\{x_1, x_8, x_{12}\} \\
\{x_2, x_{11}\} \\
\{\overline{x_7}, x_3, x_9\} \\
\{x_7, x_8, x_9\} \\
\{x_7, x_8, \overline{x_{10}}\} \\
\{\overline{x_7}, x_{10}, \overline{x_{12}}\} \quad \text{(new learned clause)}
\]

Scores:
4 : x_8, x_7
3 : x_1
2 : x_3, x_{10}, x_{12}
1 : x_2, x_4, x_9, x_{11}
Implementation of VSIDS

- **Possible:** Keep list of variables sorted by score
Implementation of VSIDS

- **Possible:** Keep list of variables sorted by score
- **Many implementations:** Use priority queues
 - Operations:
 - `insert_with_priority`, `pull_highest_priority_element`
Implementation of VSIDS

- **Possible:** Keep list of variables sorted by score
- **Many implementations:** Use priority queues
 - **Operations:**
 - `insert_with_priority`, `pull_highest_priority_element`
- **Often implemented as binary heaps**
 - Insert: $O(\log n)$
 - Delete: $O(\log n)$
 - Peek: $O(1)$
Variants of VSIDS

- **Question**: Why periodically divide scores?
- **Answer**: Give priority to recently learned clauses
- **Chaff**: half scores every 256 conflicts ("decay"); sort priority queue after each decay only
- **Variants of VSIDS**:
 - Berkmin’s strategy (Berkmin, 2002) – bump all literals in implication graph, divide scores by 4
 - VMTF: variable move to front (Siege, 2004)
 - CMTF: clause move to front (HaifaSAT, 2008)
 - eVSIDS – exponential VSIDS
Comparison of Heuristics

SAT Competition 2013 Application Track Benchmarks Solved by Lingeling

- static
- inc
- sum
- vmtf
- vsids256
- evsids
- avg
- sc13

Run-Time Distribution (Time Limit 1000 seconds)
Learned Clause Removal

- **Problem:** Too many learned clauses!
 - ...and not all of them are helpful (e.g. subsumed clauses)
 - BCP gets slower, memory consumption
- **Solution:** Forget clauses after some time
 - also called *Clause Database Reduction*
 - size heuristics: discard long clauses
 - least recently used (LRU) heuristics: discard clauses not involved in recent conflict clause generation
 - “Glucose level”: number of distinct decision levels in learned clauses (called LBD in original paper [2])
1994 First parallel implementation of DPLL
- completely distributed (no master and slave roles)
- A list of partial assignment is generated
- Each processors receives the entire formula and a few partial assignments
- Each Processors consists of
 - Worker (solve or split the formula, use the partial assignments)
 - Balancer (estimate workload, communicate, stopping)
- If a worker has nothing to do (all its partial assignments lead to UNSAT) a balancing process is launched.
PSATO – Zhang et al. 1994

- Centralized master-slave architecture
- Communication only between master and slaves
- Master assigns partial assignments based on the Guiding Path
 - Each node in the search tree is open or closed (closed means one branch is explored)
 - Master splits the open nodes and assigns job to slaves
- All processors can get stuck on unpromising branches
Guiding Path Example

guiding path
\{(X1,0,0),(X3,1,0),(X4,1,1),(X5,0,0)\}

*** : explored branch
+ : current node
? : remaining subtree
The solver Satz improves PSATO the by adding work stealing for workload balancing:
- An idle slave request work from the master
- The master splits the work of the most loaded slave
- The idle slave and most loaded slave get the parts
2001 – Clause learning invented

I FREAKING LOVE LEARNING!!!!
Clause Sharing Parallel Solvers

2001, Blochinger et al.: PaSAT – the first parallel DPLL with "intelligent backtracking" and clause sharing
 - Similar to PSATO and SATZ: master slave, guiding path, randomized work stealing
2004, Feldman et al. – the first shared memory parallel solver
 - Multi-core processors started to be popular
 - Uses same techniques as the previous solvers (guiding path etc.)
 - Bad performance explained by high number of cache misses
 (DPLL/CDCL is otherwise highly optimized for cache)

... and many many more similar solvers
Cube and Conquer

Basic Idea

Generate a large amount of partial assignments (millions) and then assign each to one of the slaves.

- It is unlikely that any of the slaves will run out tasks
- The partial assignments are usually generated using a look-ahead solver (breadth-first search up to a limited depth)
- Examples of such solvers
 - March (Heule) + iLingeling (Biere) introduced the idea in 2011
 - Treengeling (Biere) – still state of the art for combinatorial problems
 - This kind of solver was used in the 200TB proof
Pure Portfolios

Basic Idea

Each processor works on the entire problem (no partial assignment restrictions). Each processor uses a (slightly) different solver (different heuristics, random seeds, etc.) All processors stop when one solver solves the problem.

- PPfolio – winner of Parallel Track in the 2011 SAT Competition
 - It is just a bash script that combines the best solvers from the 2010 Competition
 - The author: “it’s probably the laziest and most stupid solver ever written, which does not even parse the CNF and knows nothing about the clauses”
 - This kind of solvers is not allowed since then in SAT Competitions
Portfolios with Clause Learning

- Same as pure portfolio but clauses are shared
- Usually the same solver with different parameters is used for each processor
- 2009, Hamadi et al.\(^1\): ManySAT – the first solver using this idea (based on MiniSat)

\(^1\)Microsoft® Research
Portfolios with Clause Learning

- Same as pure portfolio but clauses are shared
- Usually the same solver with different parameters is used for each processor
- 2009, Hamadi et al.1: ManySAT – the first solver using this idea (based on MiniSat)

This is most successful approach since then

1Microsoft\textregistered Research
What Makes a Good Portfolio Solver

Two Pillars of Portfolios:

Diversification
- The search space of the solvers should not overlap too much
- Use different configuration values of heuristic parameters
- Partial assignment recommendations (no restrictions!)

Clause Sharing
- Which clauses to share?
- How many?
- How often?
- How to implement efficiently?
Experiments – Random Satisf. 3-SAT

Satisfiable Instances

- No Diversification, No Sharing
- Only Sharing
- Only Diversification
- Diversification and Sharing

Time in seconds

Problems

CDCL Round-Up
Carsten Sinz, Tomáš Balyo – SAT Solving
Advice for Satisfiable problems

DIVERSIFY YOUR PORTFOLIO

memegenerator.net
Experiments – Random Unsat. 3-SAT

 Unsatisfiable Instances

No Diversification, No Sharing
Only Sharing
Only Diversification
Diversification and Sharing

Time in seconds

Problems

Clause sharing is important for UNSAT.

CDCL Round-Up
Carsten Sinz, Tomáš Balyo – SAT Solving
June 12, 2018
Clause sharing is important for UNSAT
A recent portfolio implementation

- HordeSAT – a Massively Parallel SAT Solver
- A scalable SAT solver for up to 2048 processors
HordeSAT Design Principles

- **Modular Design**
 - blackbox approach to SAT solvers
 - any solver implementing a simple interface can be used

- **Decentralization**
 - all nodes are equivalent, no central/master nodes

- **Overlapping Search and Communication**
 - search procedure (SAT solver) never waits for clause exchange
 - at the expense of losing some shared clauses

- **Hierarchical Parallelization**
 - running on clusters of multi-cpu nodes
 - shared memory inter-node clause sharing
 - message passing between nodes
Modular Design

Portfolio Solver Interface

```cpp
void addClause(vector<int> clause);
SatResult solve(); // SAT, UNSAT, UNKNOWN
void setSolverInterrupt();
void unsetSolverInterrupt();
void setPhase(int var, bool phase);
void diversify(int rank, int size);
void addLearnedClause(vector<int> clause);
void setLearnedClauseCallback(LCCallback* clb);
void increaseClauseProduction();
```

- Lingeling implementation with just glue code
- MiniSat implementation, small modification for learned clause stuff
Diversification

Setting Phases – "void setPhase(int var, bool phase)"
- Random – each variable random phase on each node
- Sparse – each variable random phase on exactly one node
- Sparse Random – each variable random phase with prob. $\frac{1}{\#\text{solvers}}$

Native Diversification – "void diversify(int rank, int size)"
- Each solver implements in its own way
- Example: random seed, restart/decision heuristic
- For lingeling we used plingeling diversification

Best is to use Sparse Random together with Native Diversification.
Clause Sharing

Regular (every 1 second) collective all-to-all clause exchange

Exporting Clauses
- Duplicate clauses filtered using Bloom filters
- Clause stored in a fixed buffer, when full clauses are discarded, when underfilled solvers are asked to produce more clauses
- Shorter clauses are preferred
- Concurrent Access – clauses are discarded

Importing Clauses
- Filtering duplicate clauses (Bloom filter)
 - Bloom filters are regularly cleared – the same clauses can be imported after some time
 - Useful since solvers seem to "forget" important clauses
Overall Algorithm

The Same Code for Each Process

SolveFormula(F, rank, size)

 for i = 1 to numThreads do
 s[i] = new PortfolioSolver(Lingeling);
 s[i].addClauses(F);
 diversify(s[i], rank, size);
 new Thread(s[i].solve());

 forever do
 sleep(1) // 1 second
 if (anySolverFinished) break;
 exchangeLearnedClauses(s, rank, size);
Experiments – SAT 2011+2014

![Graph showing the performance of Lingeling on various problem sets over time in seconds. The x-axis represents problems, and the y-axis represents time in seconds. Different line colors and styles indicate different problem sizes: 1x4x4, 2x4x4, 4x4x4, 8x4x4, 16x4x4, 32x4x4, 64x4x4, and 128x4x4.]
Experiments – Speedups

Big Instance = solved after $10 \cdot (\#\text{threads})$ seconds by Lingeling

<table>
<thead>
<tr>
<th>Core Solvers</th>
<th>Parallel Solved</th>
<th>Both Solved</th>
<th>Speedup All</th>
<th>Speedup Big</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x4x4</td>
<td>303</td>
<td>25.01</td>
<td>3.08</td>
<td>524</td>
</tr>
<tr>
<td>2x4x4</td>
<td>310</td>
<td>30.38</td>
<td>4.35</td>
<td>609</td>
</tr>
<tr>
<td>4x4x4</td>
<td>323</td>
<td>41.30</td>
<td>5.78</td>
<td>766</td>
</tr>
<tr>
<td>8x4x4</td>
<td>317</td>
<td>50.48</td>
<td>7.81</td>
<td>801</td>
</tr>
<tr>
<td>16x4x4</td>
<td>330</td>
<td>65.27</td>
<td>9.42</td>
<td>1006</td>
</tr>
<tr>
<td>32x4x4</td>
<td>399</td>
<td>83.68</td>
<td>11.45</td>
<td>1763</td>
</tr>
<tr>
<td>64x4x4</td>
<td>377</td>
<td>104.01</td>
<td>13.78</td>
<td>2138</td>
</tr>
<tr>
<td>128x4x4</td>
<td>407</td>
<td>109.34</td>
<td>13.05</td>
<td>2607</td>
</tr>
</tbody>
</table>
Experiments – Speedups on Big Inst.

Big Instance = solved after $10 \cdot (\#\text{threads})$ seconds by Lingeling

![Graph of Speedups vs Problems for different problem sizes](image-url)
References I

URL http://dl.acm.org/citation.cfm?id=1661445.1661509