Practical SAT Solving
Lecture 6
Carsten Sinz, Tomáš Balyo | May 29, 2018
Lecture Outline

- Stålmarck’s Method
- Advanced Techniques in DPLL
 - Restarts
 - Phase Saving
Stålmarck’s Method [1]

- **Input**: Arbitrary formula \(F \) in propositional logic (need not be in CNF, \(\Rightarrow \) and \(\Leftrightarrow \) also allowed)
- **Goal**: Show unsatisfiability of \(F \)
- **Preprocessing**: Decompose formula tree into simple equations (triplets) \(T \) and a literal equivalence class \(R \).
 \[R \subseteq L^0 \times L^0 \text{ where } L^0 = L \cup \{0, 1\}, \text{ } R \text{ ‘consistent’} \]
- **Basic processing steps**: \(k \)-saturation (\(k = 0, 1, \ldots \))
 - 0-saturation: simplification with triplet rules
 - \(k \)-saturation (\(k \geq 1 \)): case distinction, breadth-first search
- Developed by Gunnar Stålmarck (~1989), patented
Decomposition into Triplets

\[F = ((x \land y) \lor \neg y) \land (z \iff y) \]

Formula tree:

 Initial equival. class: \(\{ n_1 = 1 \} \)
(to show unsatisfiability of \(F \) by contradiction)
Stålmarck’s Method: 0-Saturation

Given set of triplets T and literal equivalence class R apply derivation rules (deriving new literal equivalences):

\[
\begin{align*}
\frac{p = q \land r}{r = 1} & \quad \frac{p = q \land r}{p = 0} \quad (A) \\
\frac{q = 1}{p = 1} & \quad \frac{q = 0}{p = 0} \\
\frac{p = q \land r}{q = 0} & \quad \frac{q = r}{p = q} \quad (B) \\
\frac{p = r}{p = 1} & \quad \frac{q = \neg r}{p = 0} \quad (C) \\
\frac{q = 1}{p = r} & \quad \frac{q = \neg r}{p = 0} \quad (D) \\
\end{align*}
\]
Stålmarck’s Method: k-Saturation

Given formula F, represented as (T, R) (triplets and equiv. rel.)
procedure saturate extends equivalence relation R:

EquivRel saturate(int k, TripletSet T, EquivRel R) {
 if ($k = 0$) return zero-saturate(T, R)
 forall $x \in \text{Var}(T)$ not fixed in R do {
 $R_0 =$ saturate($k - 1$, T, $R \cup \{x = 0\}$)
 $R_1 =$ saturate($k - 1$, T, $R \cup \{x = 1\}$)
 $R = R_0 \cap R_1$
 }
 return R
}

(zero-saturate returns all-relation if inconsistency was found)
k-Saturation: Graphical Illustration

0-saturation (simplification rules)

1-saturation

2-saturation

merge relations → new R
Summary: Stålmarck’s Algorithm

Input: Formula F represented as set of triplets T
(with n_1 representing top of formula tree)

Output: F satisfiable?

```java
boolean stalmarckSAT(TripletSet T) {
    k = 0; R = \{n_1 = 1\}
    do {
        R = saturate(k, T, R)
        if (R = all-relation) return false
        else if (R satisfies all triplets T) return true
        else k = k + 1
    }
}
```
Restarts

- What is a restart?

Clear the partial assignment
Unassign all the variables
Backtrack to level 0

Why would anybody want to do restarts in DPLL?
To recover from bad branching decisions
You solve more instances
Might decrease performance on easy instances
What is a restart?
- Clear the partial assignment
- Unassign all the variables
- Backtrack to level 0
Restarts

- What is a restart?
 - Clear the partial assignment
 - Unassign all the variables
 - Backtrack to level 0
- Why would anybody want to do restarts in DPLL?
Restarts

- What is a restart?
 - Clear the partial assignment
 - Unassign all the variables
 - Backtrack to level 0

- Why would anybody want to do restarts in DPLL?
 - To recover from bad branching decisions
 - You solve more instances
 - Might decrease performance on easy instances
Restarts: Why?

Heavy-tail distribution
\[P[X > x] \sim C \cdot x^{-\alpha} \]
(for \(0 < \alpha < 2, \ C > 0 \))

Standard distribution
\[P[X > x] \sim \frac{1}{x\sqrt{2\pi}}e^{-x^2/2} \]
(Figures from Gomes et al., 2000)
When to Restart?

- After a given number of decisions
- The number of decision between restarts should grow
 - To guarantee completeness
- How much increase?
 - Linear increase – too slow
 - Exponential increase – ok with small exponent
 - MiniSat: k-th restart happens after 100×1.1^k
Inner/Outer Restart Scheduling

Inner/Outer Restart Algorithm

```plaintext
int inner = 100
int outer = 100

forever do
  . . . do DPLL for inner conflicts . . .
  restarts++
  if inner >= outer then
    outer *= 1.1
    inner = 100
  else
    inner *= 1.1
```

Carsten Sinz, Tomáš Balyo – SAT Solving

Stålmarck's Method Advanced DPLL

May 29, 2018 13/18
Luby Sequence

\[Luby = u \cdot (t_i)_{i \in \mathbb{N}} \]

\[t_i = \begin{cases}
2^{k-1} & \text{if } i = 2^k - 1 \\
2^{k-1} + 1 & \text{if } 2^{k-1} \leq i \leq 2^k - 1
\end{cases} \]

1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, \ldots
Luby Sequence Algorithm

```c
unsigned luby(unsigned i) {
    for (unsigned k = 1; k < 32; k++) {
        if (i == (1 << k) - 1) return 1 << (k - 1);
    }
    for (k = 1;; k++) {
        if ((1 << (k - 1)) <= i && i < (1 << k) - 1) return luby(i - (1 << (k-1)) + 1);
    }
    limit = 512 * luby(++restarts);
    ... // run SAT core loop for limit conflicts
}
```

- Complicated, not trivial to compute
Reluctant Doubling

- A more efficient implementation of the Luby sequence
- Use the v_n of the following pair

\[
(u_1, v_1) = (1, 1) \tag{1}
\]

\[
(u_{n+1}, v_{n+1}) = u_n \& - u_n = v_n ? (u_n + 1, 1) : (u_n, 2v_n) \tag{2}
\]

- Example: $(1,1), (2,1), (2,2), (3,1), (4,1), (4,2), (4,4), (5,1), ...$
- Invented by Donald Knuth
Phase Saving

First implemented in RSAT (2006)
http://reasoning.cs.ucla.edu/rsat/

- Observation: Frequent *Restarts* decrease performance on some SAT instances
- Goal: Cache partial solutions to subsets of the formula and reuse them after a restart
- Idea: Remember last assignment of each variable and use it *first* in branching
- Result: *Phase Saving* stabilizes positive effect of restarts; best results in combination with *non-chronological backtracking* (later in this lecture)

Example: A and B are satisfied, search works on component C
URL http://dx.doi.org/10.1023/A:1008725524946