Practical SAT Solving

Lecture 5

Carsten Sinz, Tomáš Balyo | May 22, 2018
Lecture Outline: Today

- Repetition
- More Details on implementing DPLL
 - Literal Selection Heuristics
 - Efficient Unit Propagation
“Modern” DPLL Algorithm with “Trail”

boolean mDPLL(ClauseSet S, PartialAssignment α) {
 while ((S, α) contains a unit clause {L}) {
 add {L = 1} to α
 }
 if (a literal is assigned both 0 and 1 in α) return false;
 if (all literals assigned) return true;
 choose a literal L not assigned in α occurring in S;
 if (mDPLL(S, α ∪ {L = 1}) return true;
 else if (mDPLL(S, α ∪ {L = 0}) return true;
 else return false;
}

(S, α): clause set S as “seen” under partial assignment α
How can we implement unit propagation efficiently?

(How can we implement pure literal elimination efficiently?)

Which literal \(L \) to use for case splitting?

How can we efficiently implement the case splitting step?
Properties of a good decision heuristic

- Fast to compute
- Yields efficient sub-problems
- More short clauses?
- Less variables?
- Partitioned problem?
Properties of a good decision heuristic

- Fast to compute
- Yields efficient sub-problems
 - More short clauses?
 - Less variables?
 - Partitioned problem?
Bohm’s Heuristic

- Best heuristic in 1992 for random SAT (in the SAT competition)
- Select the variable x with the maximal vector $(H_1(x), H_2(x), \ldots)$

$$H_i(x) = \alpha \max(h_i(x), h_i(\overline{x})) + \beta \min(h_i(x), h_i(\overline{x}))$$

- where $h_i(x)$ is the number of not yet satisfied clauses with i literals that contain the literal x.
- α and β are chosen heuristically ($\alpha = 1$ and $\beta = 2$).
- Goal: satisfy or reduce size of many preferably short clauses
MOMS Heuristic

- Maximum Occurrences in clauses of Minimum Size
- Popular in the mid 90s
- Choose the variable x with a maximum $S(x)$.

$$S(x) = (f^*(x) + f^*(\overline{x})) \times 2^k + (f^*(x) \times f^*(\overline{x}))$$

- where $f^*(x)$ is the number of occurrences of x in the smallest not yet satisfied clauses, k is a parameter
- Goal: assign variables with high occurrence in short clauses
Jeroslow-Wang Heuristic

- Considers all the clauses, shorter clauses are more important
- Choose the literal x with a maximum $J(x)$.

$$J(x) = \sum_{x \in c, c \in F} 2^{-|c|}$$

- Two-sided variant: choose variable x with maximum $J(x) + J(\overline{x})$
- Goal: assign variables with high occurrence in short clauses
- Much better experimental results than Bohm and MOMS
- One-sided version works better
(R)DLCS and (R)DLIS Heuristics

- (Randomized) Dynamic Largest (Combined | Individual) Sum
- Dynamic = Takes the current partial assignment in account
- Let C_P (C_N) be the number of positive (negative) occurrences
- DLCS selects the variable with maximal $C_P + C_N$
- DLIS selects the variable with maximal $\max(C_P, C_N)$
- RDLCS and RDLIS does a random selection among the best
 - Decrease greediness by randomization
- Used in the famous SAT solver GRASP in 2000
LEFV Heuristic

- Last Encountered Free Variable
- During unit propagation save the last unassigned variable you see, if the variable is still unassigned at decision time use it otherwise choose a random
- Very fast computation: constant memory and time overhead
 - Requires 1 int variable (to store the last seen unassigned variable)
- Maintains search locality
- Works well for pigeon hole and similar formulas
How to Implement Unit Propagation

The Task

Given a partial truth assignment ϕ and a set of clauses F identify all the unit clauses, extend the partial truth assignment, repeat until fix-point.

Simple Solution

- Check all the clauses
- Too slow
- Unit propagation cannot be efficiently parallelized (is P-complete)
How to Implement Unit Propagation

The Task

Given a partial truth assignment ϕ and a set of clauses F identify all the unit clauses, extend the partial truth assignment, repeat until fix-point.

Simple Solution

- Check all the clauses
- Too slow
- Unit propagation cannot be efficiently parallelized (is P-complete)

In the context of DPLL the task is actually a bit different

- The partial truth assignment is created incrementally by adding (decision) and removing (backtracking) variable value pairs
- Using this information we will avoid looking at all the clauses
How to Implement Unit Propagation

The Real Task

We need a data structure for storing the clauses and a partial assignment ϕ that can efficiently support the following operations:

- detect new unit clauses when ϕ is extended by $x_i = v$
- update itself by adding $x_i = v$ to ϕ
- update itself by removing $x_i = v$ from ϕ
- support restarts, i.e., un-assign all variables at once

Observation

- We only need to check clauses containing x_i
Occurrences List and Literals Counting

The Data Structure
- For each clause remember the number unassigned literals in it
- For each literal remember all the clauses that contain it

Operations
- If $x_i = T$ is the new assignment look at all the clauses in the occurrence of $\overline{x_i}$. We found a unit if the clause is not SAT and counter=2
- When $x_i = v$ is added or removed from ϕ update the counters
"Traditional" Approach

Crawford, Auton (1993)

Clause
- int actPos
- int actNeg
- list<Literal> literals
- Variable* subsumedBy

number of positive / negative literals in clause (to detect units)
literals of the clause
pointer to variable by which this clause first was subsumed (or NIL if cl. is not subsumed); needed for backtracking

Variable
- enum {0, 1, OPEN} state
- int nrPosOcc
- int nrNegOcc
- list<Clause*> posOccList
- list<Clause*> negOccList

assignment state
number of positive / negative occurrences of variable
pointers to clauses, in which variable occurs positively / negatively

Crawford, Auton (1993)
Traditional Approach: Example

\[F = \{\{x, \neg y, z\}, \{\neg z\}\} \]
Traditional Approach: Example

\[F = \{\{x, \neg y, z\}, \{\neg z\}\} \]

unit propagation: set \(z = 0 \)
Traditional Approach: Example

\[F = \{ \{x, \neg y, z\}, \{\neg z\}\} \quad \text{unit propagation: set } z = 0 \]
Traditional Approach: Example

\[F = \{ \{ x, \neg y, z \}, \{ \neg z \} \} \]

unit propagation: set \(z = 0 \)
Head/Tail Lists

Zhang, Stickel (1996)
Head/Tail Lists: Example

\[F = \{ \{ x, \neg y, z \}, \{ \neg z \} \} \]
Head/Tail Lists: Example

\(F = \{ \{ x, \neg y, z \}, \{ \neg z \} \} \)
detected unit clause: \(\{ \neg z \} \)
Head/Tail Lists: Example

\[F = \{ \{ x, \neg y, z \}, \{ \neg z \} \} \]

unit propagation: set \(z = 0 \)
F = \{ \{ x, \neg y, z \}, \{ \neg z \} \}

unit propagation: set z = 0
Head/Tail Lists: Example

\[F = \{ \{x, \neg y, z\}, \{\neg z\}\} \]

unit propagation: set \(z = 0 \)
2 watched literals

The Data Structure

- In each non-satisfied clause "watch" two non-false literals
- For each literal remember all the clauses where it is watched

Maintain the invariant: two watched non-false literals in non-sat clauses

- If a literal becomes false find another one to watch
- If that is not possible the clause is unit

Advantages
2 watched literals

The Data Structure

- In each non-satisfied clause "watch" two non-false literals
- For each literal remember all the clauses where it is watched

Maintain the invariant: two watched non-false literals in non-sat clauses

- If a literal becomes false find another one to watch
- If that is not possible the clause is unit

Advantages

- visit fewer clauses: when \(x_i = T \) is added only visit clauses where \(\overline{x_i} \) is watched
- no need to do anything at backtracking and restarts
 - watched literals cannot become false
2 Watched Literals: Data Structures

Clause
- `int watched_1_index;`
- `int watched_2_index;`
- `vector<Literal> literals`

watched literals
(indices in literal vector)
literals of the clause

Variable
- `enum { 0, 1, OPEN } state`
- `list<Clause*> posWatched`
- `list<Clause*> negWatched`

assignment state
pointers to clauses, in which variable is watched (positively / negatively)
2 Watched Literals: Example

- \neg x_1, x_4, \neg x_5, x_7, x_9
- x_1 = 1
- x_4, \neg x_5, x_7, x_9
- x_5 = 1, x_9 = 0
- \neg x_1, x_4, \neg x_5, x_7, x_9
- x_4 = 0
- \neg x_1, x_4, \neg x_5, x_7, x_9
- x_4 \cdot x_5 \cdot x_9
- \neg x_1, x_4, \neg x_5, x_7, x_9

- \neg x_1 is false
- add. \neg x_5, x_9 are false
- add. \neg x_4 is false, new unit x_7
- no change on watched literals
Good for parallel SAT solvers with shared clause database
MiniSat

 invariant: first two literals are watched
PicoSat

-2 head

-8 -2 7 1

1 -2

-2 3 -5

Invariant: first two literals are watched
Lingeling

- often the other watched literal satisfies the clause
- for binary clauses no need to store the clause
CRef Solver::propagate()
{
 CRef confl = CRef_Undef;
 int num_props = 0;

 while (qhead < trail.size()){
 Lit p = trail[qhead++]; // propagate 'p'.
 vec<Watcher>& ws = watches.lookup(p);
 Watcher *i, *j, *end;
 num_props ++;
 for (i = j = (Watcher*)ws , end = i + ws.size();
 i != end ;){
 // Try to avoid inspecting the clause:
 Lit blocker = i->blocker;
 if (value(blocker) == l_True){
 *j++ = *i ++; continue ;
 }
 // Make sure the false literal is data[1]:
 CRef cr = i->cref;
 Clause& c = ca[cr];
 Lit false_lit = ~p;
 if (c[0] == false_lit)
 c[0] = c[1]; c[1] = false_lit;
 assert(c[1] == false_lit);
 i ++;

 // If 0th watch is true, clause is satisfied.
 Lit first = c[0];
 Watcher w = Watcher(cr, first);
 if (first != blocker && value(first) == l_True){
 *j++ = w; continue ;
 }

 // Look for new watch:
 for (int k = 2; k < c.size(); k++)
 if (value(c[k]) != l_False){
 c[1] = c[k]; c[k] = false_lit;
 watches[~c[1]].push(w);
 goto NextClause ;
 }
 }
 ws.shrink(i - j);
 }
 propagations += num_props;
 simpDB_props -= num_props;
 return confl ;
}

// Look for new watch:
for (int k = 2; k < c.size(); k++)
if (value(c[k]) != l_False){
 c[1] = c[k]; c[k] = false_lit;
 watches[~c[1]].push(w);
 goto NextClause ;
}

// Did not find watch -- clause is unit
*j++ = w;
if (value(first) == l_False){
 confl = cr;
 qhead = trail.size();
 // Copy the remaining watches:
 while (i < end)
 *j++ = *i++;
} else
 uncheckedEnqueue(first, cr);

NextClause :;
}
}

ws.shrink(i - j);
}

propagations += num_props;
simpDB_props -= num_props;
return confl ;
}