Practical SAT Solving

Lecture 2

Carsten Sinz, Tomáš Balyo | Apr 24, 2018
Encodings: Motivation

- A wide variety of problems can be encoded as SAT!
 - (Finite) arithmetic
 - Mathematical / practical combinatorial problems
 - Hardware / software verification problems
 - Planning problems

- Chosen encoding highly influences runtime of SAT solver
 - A lot of research on good encodings
 - ...but still more an art than a science
Finite-Domain Variables

- Common in combinatorial problems: finite domain variables, e.g.:
 \[x \in \{v_1, \ldots, v_n\} \]

- Relationships between them expressed as equality-formulas, e.g.:
 \[x = v_3 \Rightarrow y \neq v_2 \]
Finite-Domain Variables

- Common in combinatorial problems: finite domain variables, e.g.:
 \[x \in \{v_1, \ldots, v_n\} \]
- Relationships between them expressed as equality-formulas, e.g.:
 \[x = v_3 \implies y \neq v_2. \]
- Direct encoding / “one-hot-encoding”:
 - Boolean variables \(x_v \): “\(x \) takes value \(v \)”
 - Must encode that each variable takes exactly one value from its domain (using at-least-one/at-most-one constraints)
 - Encoding of variables’ constraints simple
Finite-Domain Variables

- Common in combinatorial problems: finite domain variables, e.g.:
 \(x \in \{v_1, \ldots, v_n\} \)
- Relationships between them expressed as equality-formulas, e.g.:
 \(x = v_3 \Rightarrow y \neq v_2 \).
- Direct encoding / “one-hot-encoding”:
 - Boolean variables \(x_v \): “\(x \) takes value \(v \)”
 - Must encode that each variable takes exactly one value from its domain (using at-least-one/at-most-one constraints)
 - Encoding of variables’ constraints simple
- Log-encoding / binary encoding:
 - Boolean variables \(b_i^x \) for \(0 \leq i < \lceil \log_2 n \rceil \)
 - Each value gets assigned a binary number, e.g.
 \(v_1 \rightarrow 00, v_2 \rightarrow 01, v_3 \rightarrow 10 \)
 - Inadmissible values must be excluded, e.g.:
 \(x \in \{v_1, v_2, v_3\} \) requires \((\overline{b}_0^x \lor \overline{b}_1^x) \)
 - Encoding of constraints can become complicated
Comparing Encodings

- Size: number of variables, number of clauses
- Propagation properties
At-Most-One Constraints

Definition

AtMostOne(x_1, \ldots, x_n) is the constraint that no more than 1 variable / literal out of x_1, \ldots, x_n is set to True.
At-Most-One Constraints

Definition

AtMostOne(x_1, \ldots, x_n) is the constraint that no more than 1 variable / literal out of x_1, \ldots, x_n is set to True.

- Alternative notations: $\leq 1 (x_1, \ldots, x_n)$, $x_1 + \cdots + x_n \leq 1$
At-Most-One Constraints

Definition

\text{AtMostOne}(x_1, \ldots, x_n) \text{ is the constraint that no more than 1 variable / literal out of } x_1, \ldots, x_n \text{ is set to True.}

- Alternative notations: \(\leq 1 (x_1, \ldots, x_n), \quad x_1 + \cdots + x_n \leq 1 \)
- Naive (pairwise) encoding: add clauses \((\overline{x_i} \lor \overline{x_j}) \) for \(1 \leq i < j \leq n \)
 - Results in \(\binom{n}{2} = \frac{n \cdot (n-1)}{2} \) clauses
At-Most-One Constraints

Definition

AtMostOne(x_1, \ldots, x_n) is the constraint that no more than 1 variable / literal out of x_1, \ldots, x_n is set to True.

- Alternative notations: $\leq 1 (x_1, \ldots, x_n)$, $x_1 + \cdots + x_n \leq 1$
- Naive (pairwise) encoding: add clauses $(\overline{x_i} \lor \overline{x_j})$ for $1 \leq i < j \leq n$
 - Results in $\binom{n}{2} = \frac{n \cdot (n-1)}{2}$ clauses
- Can we do better?
At-Most-One Constraints

Definition

\(\text{AtMostOne}(x_1, \ldots, x_n) \) is the constraint that no more than 1 variable / literal out of \(x_1, \ldots, x_n \) is set to True.

- **Alternative notations:** \(\leq 1 \ (x_1, \ldots, x_n), \quad x_1 + \cdots + x_n \leq 1 \)
- **Naive (pairwise) encoding:** add clauses \((\overline{x_i} \lor \overline{x_j}) \) for \(1 \leq i < j \leq n \)
 - Results in \(\binom{n}{2} = \frac{n \cdot (n-1)}{2} \) clauses
- **Can we do better? Yes!**
At-Most-One Constraints

Definition

AtMostOne(x_1, \ldots, x_n) is the constraint that no more than 1 variable / literal out of x_1, \ldots, x_n is set to True.

- Alternative notations: $\leq 1 (x_1, \ldots, x_n)$, $x_1 + \cdots + x_n \leq 1$
- Naive (pairwise) encoding: add clauses $(\overline{x_i} \lor \overline{x_j})$ for $1 \leq i < j \leq n$
- Results in $\binom{n}{2} = \frac{n \cdot (n-1)}{2}$ clauses
- Can we do better? Yes!

Encodings and their complexity (in number of clauses):

- Pairwise encoding: $O(n^2)$ (without extra variables)
- Ladder encoding: $O(n)$ (with n extra variables)
- Tree encoding: $O(n \log n)$ (with $\log n$ extra variables)
What is Planning

Informal Definition

Planning is the process of finding a plan, i.e., a sequence of actions that changes the state of the world from some initial state to a desired (goal) state.

Examples

- Delivering some packages
- Building a submarine
- Robot motion planning
- Fulfilling a scientific goal by an autonomous space probe
Trucking Example

Initial State
- There is a truck and a package in city A
- There is a package in city B

Goal
- There are two packages in city C

Possible Actions
- (Un)loading packages from/on the truck, driving between cities
Formalizing Planning

Planning Problem Definition – SAS+ formalism

A planning problem instance Π is a tuple $(\mathcal{X}, \mathcal{A}, s_I, s_G)$ where

- \mathcal{X} is a set of multivalued variables with finite domains.
 - each variable $x \in \mathcal{X}$ has a finite possible set of values $\text{dom}(x)$
- \mathcal{A} is a set actions. Each action $a \in \mathcal{A}$ is a tuple $(\text{pre}(a), \text{eff}(a))$
 - $\text{pre}(a)$ is a set of preconditions of action a
 - $\text{eff}(a)$ is a set of effects of action a
 - both are sets of equalities of the form $x = v$ where $x \in \mathcal{X}$ and $v \in \text{dom}(x)$
- s_I is the initial state, it is a **full** assignment of the variables in \mathcal{X}
- s_G is the set of goal conditions, it is a set of equalities (same as $\text{pre}(a)$ and $\text{eff}(a)$)
World State

A state is full assignment of the variables in \(\mathcal{X} \) (each variable \(x \in \mathcal{X} \) has exactly one value assigned from its domain \(\text{dom}(x) \)). A state can be represented as a set of equalities.

The initial state \(s_I \) is a state. A state \(s \) is a goal state if \(s_G \subseteq s \).

Applicable Actions

An action \(a \in \mathcal{A} \) is applicable in the state \(s \) if \(\text{pre}(a) \subseteq s \).

Applying an Action

When an action \(a \in \mathcal{A} \) is applied in the state \(s \) it changes to the state \(s' \) such that \(\text{eff}(a) \subseteq s' \) and the difference between \(s \) and \(s' \) is minimal (only variables used in \(\text{eff}(a) \) are changed).
A Plan

A plan for P for a planning problem $\Pi = (\mathcal{X}, \mathcal{A}, s_I, s_G)$ is sequence of actions a_1, a_2, \ldots, a_n such that:

- $\forall i \ a_i \in \mathcal{A}$
- let $s_1 = s_I$ and $s_{i+1} = \text{apply}(s_i, a_i)$
- a_i is applicable in s_i
- $s_G \subseteq s_{n+1}$

If $P = \{a_1, a_2, \ldots, a_n\}$ then n is the length of the plan P.

An optimal plan is a plan of shortest length.
variables: Truck Location T, $\text{dom}(T) = \{A, B, C\}$, Package Locations P_1 and P_2, $\text{dom}(P_1) = \text{dom}(P_2) = \{A, B, C, T\}$

Initial state: $\{T = A, P_1 = A, P_2 = B\}$

Goal: $\{P_1 = C, P_2 = C\}$

Actions:
- $\text{load}(P_i, L) = (\{T = L, P_i = L\}, \{P_i = T\})$
- $\text{unload}(P_i, L) = (\{T = L, P_i = T\}, \{P_i = L\})$
- $\text{drive}(L_1, L_2) = (\{T = L_1\}, \{T = L_2\})$ where $i \in \{1, 2\}$ and $L, L_1, L_2 \in \{A, B, C\}$
Trucking Example

World State

- \(T = A, P_1 = A, P_2 = B \)
- \(T = A, P_1 = T, P_2 = B \)
- \(T = B, P_1 = T, P_2 = B \)
- \(T = B, P_1 = T, P_2 = T \)
- \(T = C, P_1 = T, P_2 = T \)
- \(T = C, P_1 = C, P_2 = C \)

The Plan

- \(\text{load}(P_1, A) \)
- \(\text{drive}(A, B) \)
- \(\text{load}(P_2, B) \)
- \(\text{drive}(B, C) \)
- \(\text{unload}(P_1, C), \text{unload}(P_1, C) \)
Sokoban Example

- Initial State
 - There is a worker and a bunch of boxes

- Goal
 - All the boxes must be in goal positions

- Possible Actions
 - moving with the worker
 - pushing a box

- Forbidden
 - to pull boxes
 - move through walls or boxes

http://wiki.pe/Sokoban
Encoding Sokoban

- Variables – For each location we have variable, the domain is WORKER, BOX, EMPTY
- Initial State – assign values based on the picture
- Goal – goal position variables have value BOX
- Actions – move and push for each possible location
 - $push(L_1, L_2, L_3) = (\{L_1 = W, L_2 = B, L_3 = E\}, \{L_1 = E, L_2 = W, L_3 = B\})$
 - $move(L_1, L_2) = (\{L_1 = W, L_2 = E\}, \{L_1 = E, L_2 = W\})$
Encoding Planning into CNF

Is that even possible?
Encoding Planning into CNF

- We cannot encode the existence of a plan in general
- But we can encode the existence of plan up to some length
We cannot encode the existence of a plan in general
But we can encode the existence of plan up to some length

SATPLAN Algorithm

- **INPUT:** a planning problem Π
- **OUTPUT:** a plan P

```plaintext
for $m := 1, 2, \ldots$ do
    $F = \text{encodePlanExists}(\Pi, m)$
    if solver.isSat($F$) then
        return extractPlan($\Pi, m, \text{solver.solution}$)
```
Encoding Planning into CNF

The Task

Given a planning problem instance $\Pi = (X, A, s_I, s_G)$ and $k \in \mathbb{N}$ construct a CNF formula F such that F is satisfiable if and only if there is a plan of length k for Π.

- Variables to encode the actions: a_t^i for each $t \in \{1, \ldots, k\}$ and $a^i \in A$.
- Variables to encode the states: $b_t^x=v$ for each $t \in \{1, \ldots, k+1\}$, $x \in X$ and $v \in \text{dom}(x)$.

In total we have $k|A| + (k+1)\sum_{x \in X} |\text{dom}(x)|$ variables.
Encoding Planning into CNF

The Task

Given a planning problem instance $\Pi = (\mathcal{X}, \mathcal{A}, s_i, s_G)$ and $k \in \mathbb{N}$ construct a CNF formula F such that F is satisfiable if and only if there is plan of length k for Π.

We will need two kinds of variables

- Variables to encode the actions:
 a^t_i for each $t \in \{1, \ldots, k\}$ and $a_i \in \mathcal{A}$

- Variables to encode the states:
 $b^t_{x=v}$ for each $t \in \{1, \ldots, k+1\}$, $x \in \mathcal{X}$ and $v \in \text{dom}(x)$

In total we have $k|\mathcal{A}| + (k + 1) \sum_{x \in \mathcal{X}} \text{dom}(x)$ variables
Encoding Planning into CNF

We will need 8 kinds of clauses

- The first state is the initial state
- The goal conditions are satisfied in the end
- Each state variable has at least one value
- Each state variable has at most one value
- If an action is applied it must be applicable
- If an action is applied its effects are applied in the next step
- State variables cannot change without an action between steps
- At most one action is used in each step
Encoding Planning into CNF

The first state is the initial state

\[
(b^1_{x=v}) \\
\forall (x = v) \in s_I
\]

(1)

The goal conditions are satisfied in the end

\[
(b^{n+1}_{x=v}) \\
\forall (x = v) \in s_G
\]

(2)
Encoding Planning into CNF

Each state variable has at least one value

\[(b_x=v_1 \lor b_x=v_2 \lor \cdots \lor b_x=v_d)\]
\[\forall x \in X, \ dom(x) = \{v_1, v_2, \ldots, v_d\}, \ \forall t \in \{1, \ldots, k + 1\}\] \hspace{1cm} (3)

Each state variable has at most one value

\[(\neg b_x=v_i \lor \neg b_x=v_j)\]
\[\forall x \in X, \ v_i \neq v_j, \ \{v_i, v_j\} \subseteq dom(x), \ \forall t \in \{1, \ldots, k + 1\}\] \hspace{1cm} (4)
Encoding Planning into CNF

If an action is applied it must be applicable

\[(\neg a^t \lor b^t_{x=v})\]
\[\forall a \in \mathcal{A}, \forall (x=v) \in \text{pre}(a), \forall t \in \{1, \ldots, k\}\]
(5)

If an action is applied its effects are applied in the next step

\[(\neg a^t \lor b^{t+1}_{x=v})\]
\[\forall a \in \mathcal{A}, \forall (x=v) \in \text{eff}(a), \forall t \in \{1, \ldots, k\}\]
(6)
State variables cannot change without an action between steps

\[
(\neg b^{t+1}_x \lor b^t_x \lor a^t_{s_1} \lor \cdots \lor a^t_{s_j})
\]

\[
\forall x \in X, \forall v \in \text{dom}(x), \text{support}(x = v) = \{a_{s_1}, \ldots, a_{s_j}\}, \quad \forall t \in \{1, \ldots, k\}
\]

By \text{support}(x = v) \subseteq A we mean the set of \textit{supporting actions} of the assignment \(x = v\), i.e., the set of actions that have \(x = v\) as one of their effects.
Encoding Planning into CNF

At most one action is used in each step

\[(\neg a_i^t \lor \neg a_j^t) \]

\[\forall \{a_i, a_j\} \subseteq A, a_i \neq a_j \ \forall t \in \{1, \ldots, k\} \]
The Task Solved

Given a planning problem instance \(\Pi = (X, A, s_I, s_G) \) and \(k \in \mathbb{N} \) a CNF formula \(F \), which is a conjunction of all the above described clauses is satisfiable if and only if there is plan of length \(k \) for \(\Pi \).

Optimizations

- Better encoding of at-most-one
- Allowing several actions in each step
- Encoding variable transitions instead of variable values
SAT is NP-Hard – proof sketch

- Let M be a non-deterministic Turing machine that accepts an input x in $P(|x|)$ time, where P is a polynomial function.
 - M on x will use at most $P(|x|)$ tape entries
- M on input x as a SAS+ planning problem Π
 - State variables are the state of the TM and the $P(|x|)$ tape entries
 - The transition function table is encoded as actions
 - Initial state: tape contains input, TM state is initial state
 - Goal state: TM state is an accepting state
- Encode Π for plan length $k = P(|x|)$ into a CNF formula F_k
 - F_k is SAT if and only if M accepts x in $P(|x|)$ time
 - F_k has polynomial size w.r.t. to M and x
Planning with incremental SAT

- we are solving a sequence of similar formulas
- how do they differ?
- how to use an incremental solver in this case?
Planning with incremental SAT

- The formula F_k is the subset of F_{k+1} except for the goal clauses.
- The goal clauses will be added as removable (in this case, since they are unit, we can just assume them)

Incremental SATPLAN Algorithm

- **INPUT**: a planning problem Π
- **OUTPUT**: a plan P

$S = \text{initSolver}()$
\text{addInitialStateClauses}(S)

for $m := 1, 2, \ldots$ do
 \text{addClausesForStep}(m, S)
 \text{assumeGoalConditionsAtStep}(m, S)
 if satisfiable(S) then return extractPlan($\Pi, m, \text{getValues}(S)$)
The DIMSPEC format

- Many other (than planning) problems have a similar structure
 - for example bounded model checking
- They can be specified using the DIMSPEC format
- DIMSPEC is four cnf formulas, where the "p cnf <n> <m>" line is replaced by:
 - i cnf <n> <m> for the initial state specification (n variables)
 - g cnf <n> <m> for the goal state specification (n variables)
 - u cnf <n> <m> for the universal state specification (n variables)
 - t cnf <n> <m> for the specification of the transition (between two neighboring states) (2n variables)
The DIMSPEC format example

c this is an example of a dimspect file
i cnf 5 3
 -1 2 0
 2 3 -5 0
 4 0

g cnf 5 1
 5 0

u cnf 5 2
 -1 2 3 0
 -3 4 5 0

t cnf 10 2
 -2 7 8 0
 -4 9 10 0
Planning as DIMSPEC

- Initial state specification clauses: \((b_{x=v}) \) added \(\forall (x = v) \in S_I \)
- Goal state specification clauses: \((b_{x=v}) \) added \(\forall (x = v) \in S_G \)
- Universal state specification clauses:
 - \((b_{x=v_1} \lor b_{x=v_2} \lor \cdots \lor b_{x=v_d}) \) added \(\forall x \in X \) where \(\text{dom}(x) = \{v_1, v_2, \ldots, v_d\} \) – at least one value
 - \((b_{x=i} \lor b_{x=j}) \) added \(\forall x \in X \) \(i \neq j \in \text{dom}(x) \) – at most one value
 - \((\overline{a} \lor b_{x=v}) \) added \(\forall a \in A, \forall (x = v) \in \text{pre}(a) \) – action preconditions
 - \((\overline{a_i} \lor \overline{a_j}) \) added \(\forall i \neq j \) – at most one action
- Transition specification clauses
 - \((\overline{a} \lor b'_{x=v}) \) added \(\forall a \in A, \forall (x = v) \in \text{eff}(a) \) – action effects
 - \((b'_{x=v} \lor b_{x=v} \lor a_{s_1} \lor \cdots \lor a_{s_j}) \) added \(\forall x \in X, \forall v \in \text{dom}(x) \) where \(\text{support}(x = v) = \{a_{s_1}, \ldots, a_{s_j}\} \) – values cannot change without a reason
Solving DIMSPEC

- Same as solving planning with incremental SAT

The Basic DISMPEC Solving Algorithm

- INPUT: a DIMSPEC problem
- OUTPUT: a truth assignment

\[
S = \text{initSolver}() \\
\text{addInitialStateClauses}(S) \\
\text{for } m := 1, 2, \ldots \text{ do } \\
\quad \text{addUniversalConditionsWithRenaming}(m, S) \\
\quad \text{if } m > 1 \text{ then } \text{addTransitionalConditionsWithRenaming}(m, S) \\
\quad \text{assumeGoalConditionsWithRenaming}(m, S) \\
\quad \text{if } \text{satisfiable}(S) \text{ then return } \text{getValues}(S)
\]