Practical SAT Solving
Lecture 8
Carsten Sinz, Tomáš Balyo | July 3, 2017
Lecture Outline

- Clause Learning
- CDCL Algorithm
Terminology

Trail
The partial assignment that represents the current path in the search tree.

Decision Level
Starting with decision level 0 every branching step increases the decision level by 1. Note: Unit-propagation does not change the decision level.

Conflicting Clause
Clause with all literals assigned to 0 under the current trail (empty under unit resolution).
DPLL: Chronological Backtracking

\[F = \{ \{ A, B \}, \{ B, C \}, \{ \neg A, \neg X, Y \}, \{ \neg A, X, Z \}, \{ \neg A, \neg Y, Z \}, \{ \neg A, X, \neg Z \}, \{ \neg A, \neg Y, \neg Z \} \} \]

- Trail: \(A, B, C, X, Y, Z \)
- Conflicting Clause: \(\{ \neg A, \neg Y, \neg Z \} \)
DPLL: Chronological Backtracking

\[F = \{\{A, B\}, \{B, C\}, \{\neg A, \neg X, Y\}, \{\neg A, X, Z\}, \{\neg A, \neg Y, Z\}, \{\neg A, X, \neg Z\}, \{\neg A, \neg Y, \neg Z\}\} \]

- Trail: \(A, B, C, \neg X, Z\)
- Conflicting Clause: \(\{\neg A, X, \neg Z\}\)
Non-Chronological Backtracking

The first two conflicting clauses
\{\neg A, \neg Y, \neg Z\}, \{\neg A, X, \neg Z\} contain only a fraction of the assignments on the trail

Assignments to \(B\) and \(C\) obviously play no role in the present conflicting state and we could immediately backtrack to flip the assignment to \(A\)

How to find out which assignments on the trail are relevant for the actual conflict?
The Implication Graph $G_I = (V \cup \{\star\}, E)$ (for a given formula F and a trail T ending in a conflict) is a directed acyclic graph (DAG) where each vertex $v \in V$ is a tuple $(x = b, d)$ consisting of an assignment $x = b$ on the trail and its decision level d. There is an additional vertex \star (with no assignment and decision level) indicating a conflicting assignment. For each clause $C = (l_1, \ldots, l_k, u)$ that became unit and caused a unit propagation of u there are edges $e \in E$ connecting the assignment of literal l_i to the assignment of unit u. Similarly, for a clause C, in which all literals are assigned false, there are edges from each literal in C to \star.
Example: Implication Graph

The graph shows the implication graph for the conflicting state under the trail \(A, B, C, X, Y, Z \). The edge labels denote clauses, node labels indicate an assignment and its decision level.

\[
F = \{ \{A, B\}, =: 1 \\
\{B, C\}, =: 2 \\
\{\neg A, \neg X, Y\}, =: 3 \\
\{\neg A, X, Z\}, =: 4 \\
\{\neg A, \neg Y, Z\}, =: 5 \\
\{\neg A, X, \neg Z\}, =: 6 \\
\{\neg A, \neg Y, \neg Z\}\} =: 7
\]
Implication Graph

In the implication graph

- the sink is always the conflicting assignment
- the sources are the decision literals that take part in the conflict
- we can use it to detect the reasons for a conflict

0 \[A = 1\]

1 \[B = 1\]
 \[3\] \[5\] \[7\]

2 \[C = 1\]
 \[3\] \[5\] \[7\]

3 \[X = 1\]
 \[3\] \[5\] \[7\]

3 \[Y = 1\]
 \[3\] \[5\] \[7\]

3 \[Z = 1\]
 \[5\] \[7\]

\[\rightarrow\]
Implication Graph: Implementation

Trail with conflicting clause \(\{\neg A, \neg Y, \neg Z\} \):

- for each assignment store a pointer to the reason clause, the one that has become unit
- decision literals store a null pointer
- with the clause pointers and the trail we can trace all the implications back to their sources
Review: Resolution

- General deduction rule for clauses: \((A \lor l), (B \lor \bar{l}) \implies (A \lor B)\)
- Can be used to extend DPLL Search by adding resolved clauses to the input formula
- Special Case: Unit Resolution (central part of DPLL Search)
- Resolution Operator: \(C \circ_l D\) denotes the resolvent of clauses \(C\) and \(D\) on literal \(l\)
Clause Learning

Back-jumping does not fully avoid the occurrence of the same conflict, the same (partial) assignments may generate the same conflict in another part of the search tree.

- Idea: store no-good constraint like in CSP (No-Good-Learning)
- Great in SAT: no-good is clause!
- generate conflict clauses and add them to CNF
- the literals contributing to a conflict form a partial assignment and its negation is a clause (implied by the original CNF)
- adding this clause avoids the conflicting partial assignment
Conflict Analysis: Example

In the first conflict of the previous example we can learn the clause \(\{\neg A, \neg X\}\) in order to prevent the solver to pick the same partial assignment again. This can also be expressed as the following sequence of resolution steps along the edges in the implication graph:

\[
C = (7 \circ Z 5) \circ Y 3
\]

\[
\begin{align*}
A &= 1 \\
B &= 1 \\
C &= 1 \\
X &= 1 \\
Y &= 1 \\
Z &= 1 \\
F &= \{\{A, B\}, \{B, C\}, \{\neg A, \neg X, Y\}, \{\neg A, X, Z\}, \{\neg A, \neg Y, Z\}, \{\neg A, \neg Y, \neg Z\}\}
\end{align*}
\]
Given the trail the conflict clause (learned clause) can be generated by subsequent resolution, starting with the conflict clause \(\{\neg A, \neg Y, \neg Z\} \) and the first reason clause on the trail \(\{\neg A, \neg Y, Z\} \) we can resolve the intermediate clause \(\{\neg A, \neg Y\} \). An additional resolution step results in the conflict clause \(C = \{\neg A, \neg X\} \).

Properties of conflict clause \(C \):

- \(F \models C \)
- \(F \cup \neg C \vdash_{UP} \perp \)
- \(D \not\subseteq F, \forall D \subseteq C \)
Unique Implication Points (UIP)

In general: several possibilities to learn a clause from an implication graph. A learned clause can be resolved for every cut in the implication graph.

- UIP is a dominator in the implication graph
- A node v is a dominator (for $\not\rightarrow$), if all paths from the last decision to $\not\rightarrow$ contain v
- FirstUIP: “first” dominator (seen from conflict side)

Graphic from Beame et al.: “Understanding the Power of Clause Learning”
Common Implementation (1UIP Learning Scheme)

- FirstUIP-clause: resolve conflicting clause and reason clauses until only a single literal of the current decision level remains.
- Advantage: Stopping at a UIP always leads to an asserting clause. Algorithm becomes easier: backtrack until clause becomes asserting.
- Undo all decisions until that level where the learned clause becomes asserting. The assertion level is the second highest level in a conflict clause.
Backtracking with Clause Learning

In our previous example the conflict clause (1UIP) with backtracking to assertion level changes the decision tree like this:

\[
\begin{align*}
&F = \{ \{A, B\}, \{B, C\}, \\
&\{\neg A, \neg X, Y\}, \\
&\{\neg A, X, Z\}, \\
&\{\neg A, \neg Y, Z\}, \\
&\{\neg A, X, \neg Z\}, \\
&\{\neg A, \neg Y, \neg Z\}\} \\
&\text{Trail: } A, B, C, X, Y, Z \\
&\text{Conflicting Clause: } \{\neg A, \neg Y, \neg Z\} \\
&\text{Conflict Clause (1UIP): } \{\neg A, \neg Y\}
\end{align*}
\]
Backtracking with Clause Learning

In our previous example the conflict clause (1UIP) with backtracking to assertion level changes the decision tree like this:

\[
F = \{\{A, B\}, \{B, C\}, \\
\{\neg A, \neg X, Y\}, \\
\{\neg A, X, Z\}, \\
\{\neg A, \neg Y, Z\}, \\
\{\neg A, X, \neg Z\}, \\
\{\neg A, \neg Y, \neg Z\}, \\
\{\neg A, \neg Y\}\} \\
\]

Trail: \(A, \neg Y, \neg X, Z\)

Conflicting Clause: \(\{\neg A, X, \neg Z\}\)
Without restrictions the clause database grows exponentially. Besides the risk of running out of memory this also slows down unit propagation. Clause database is regularly cleaned up. Quality measures for clauses (e.g. clause size, clause activity, LBD value)
1-UIP Clause
1-UIP Clause
1-UUIP Clause

\begin{itemize}
\item $a = 1$
\item $b = 1$
\item $c = 0$
\item $d = 0$
\item $e = 1$
\item $f = 0$
\item $g = 1$
\item $h = 1$
\item $i = 0$
\item $j = 1$
\item $k = 1$
\item $l = 0$
\end{itemize}

\begin{itemize}
\item \{ $l, i, \neg j$ \}
\item \{ f, i, j \}
\item \{ $\neg k, \neg l$ \}
\item \{ $\neg b, \neg h, k$ \}
\item \{ $c, \neg g, h$ \}
\item \{ $\neg e, \neg h, \neg i$ \}
\item \{ $\neg b, \neg e, \neg f$ \}
\item \{ $\neg a, b$ \}
\item \{ c, d, e \}
\end{itemize}
1-UIP Clause

Introduction Clause Learning CDCL

18/20

Carsten Sinz, Tomáš Balyo – SAT Solving
CDCL Algorithm

Data: Formula F

Result: SAT / UNSAT

1. $dl \leftarrow 0$
2. $V \leftarrow \emptyset$
3. if unit propagation $(F, V) = \text{CONFLICT}$ then
 - return UNSAT
4. while not all variables assigned do
 5. $(x, l) \leftarrow$ pick branching literal
 6. $dl \leftarrow dl + 1$
 7. $V \leftarrow \cup (x, l)$
 8. if unit propagation $(F, V) = \text{CONFLICT}$ then
 9. bl \leftarrow analyze conflict
 10. if $bl < 0$ then
 11. return UNSAT
 else
 12. backtrack to bl
 13. $dl \leftarrow bl$
16. return SAT
Resolution Proof

With Clause Learning a complete resolution refutation can be derived with CDCL

- proof can serve as a certificate for validating the correctness of the SAT solver
- resolution refutations based on clause learning find key practical applications (e.g. model checking)
- can help to determine minimally unsatisfiable subsets in an unsatisfiable formula