Practical SAT Solving

Lecture 7

Carsten Sinz, Tomáš Balyo | June 26, 2017
Lecture Outline

- Stålmarck’s Method
- Advanced Techniques in DPLL
 - Restarts
 - Phase Saving
Stålmarck’s Method [1]

- **Input**: Arbitrary formula F in propositional logic (need not be in CNF, \Rightarrow and \Leftrightarrow also allowed)
- **Goal**: Show unsatisfiability of F
- **Preprocessing**: Decompose formula tree into simple equations (triplets) T and a literal equivalence class R.
 ($R \subseteq L^0 \times L^0$ where $L^0 = L \cup \{0, 1\}$, R ‘consistent’)
- **Basic processing steps**: k-saturation ($k = 0, 1, \ldots$)
 - 0-saturation: simplification with triplet rules
 - k-saturation ($k \geq 1$): case distinction, breadth-first search
- Developed by Gunnar Stålmarck (~ 1989), patented
Decomposition into Triplets

\[F = ((x \land y) \lor \neg y) \land (z \iff y) \]

Formula tree:

Initial equival. class: \(\{ n_1 = 0 \} \)
(to show unsatisfiability of \(F \))
Stålmarck’s Method: 0-Saturation

Given set of triplets T and literal equivalence class R apply derivation rules (deriving new literal equivalences):

\[
\frac{p = q \land r}{p = 1} \quad \frac{r = 1}{q = 1} \quad (A)
\]

\[
\frac{p = q \land r}{p = 0} \quad \frac{q = 0}{p = 0} \quad (B)
\]

\[
\frac{p = q \land r}{q = 1} \quad \frac{q = 1}{p = r} \quad (C)
\]

\[
\frac{p = q \land r}{p = 1} \quad \frac{p = \neg q}{p = 0} \quad (D)
\]

\[
\frac{p = q \land r}{q = r} \quad \frac{q = r}{p = q} \quad (E)
\]

\[
\frac{p = q \land r}{q = \neg r} \quad \frac{q = \neg r}{p = 0} \quad (F)
\]
Stålmarck’s Method: \(k \)-Saturation

Given formula \(F \), represented as \((T, R)\) (triplets and equiv. rel.)
procedure saturate extends equivalence relation \(R \):

\[
\text{EquivRel saturate}(\text{int } k, \text{ TripletSet } T, \text{ EquivRel } R) \\
\{
\begin{align*}
\text{if } (k = 0) & \text{ return zero-saturate}(T, R) \\
\forall x \in \text{Var}(T) \text{ not fixed in } R & \text{ do }
\begin{align*}
R_0 &= \text{saturate}(k - 1, T, R \cup \{x = 0\}) \\
R_1 &= \text{saturate}(k - 1, T, R \cup \{x = 1\}) \\
R &= R_0 \cap R_1
\end{align*}
\}
\text{return } R
\}
\]

(\text{zero-saturate returns all-relation if inconsistency was found})
k-Saturation: Graphical Illustration

0-saturation (simplification rules)

1-saturation

2-saturation

merge relations

$
ightarrow$ new R
Summary: Stålmarck’s Algorithm

Input: Formula F represented as set of triplets T
(with n_1 representing top of formula tree)

Output: F satisfiable?

```java
boolean stalmarck(TripletSet T) {
    k = 0; R = \{n_1 = 0\}
    do {
        R = saturate(k, T, R)
        if (R = all-relation) return false
        else if (R satisfies all triplets T) return true
        else k = k + 1
    } 
}
```
Restarts

- What is a restart?
What is a restart?
- Clear the partial assignment
- Unassign all the variables
- Backtrack to level 0
Restarts

- What is a restart?
 - Clear the partial assignment
 - Unassign all the variables
 - Backtrack to level 0
- Why would anybody want to do restarts in DPLL?
Restarts

- **What is a restart?**
 - Clear the partial assignment
 - Unassign all the variables
 - Backtrack to level 0

- **Why would anybody want to do restarts in DPLL?**
 - To recover from bad branching decisions
 - You solve more instances
 - Might decrease performance on easy instances
Restarts: Why?

Heavy-tail distribution

\[P[X > x] \sim C \cdot x^{-\alpha} \]

(for \(0 < \alpha < 2, \ C > 0 \))

Standard distribution

\[P[X > x] \sim \frac{1}{x\sqrt{2\pi}}e^{-x^2/2} \]

(Figures from Gomes et al., 2000)
When to Restart?

- After a given number of decisions
- The number of decision between restarts should grow
 - To guarantee completeness
- How much increase?
 - Linear increase – too slow
 - Exponential increase – ok with small exponent
 - MiniSat: k-th restart happens after 100×1.1^k
Inner/Outer Restart Scheduling
Inner/Outer Restart Algorithm

```c
int inner = 100
int outer = 100

forever do 
    . . . do DPLL for inner conflicts . . .
    restarts++
    if inner >= outer then
        outer *= 1.1
        inner = 100
    else
        inner *= 1.1
```
Luby Sequence

$Luby = u \cdot (t_i)_{i \in \mathbb{N}}$

$t_i = \begin{cases}
2^{k-1} & \text{if } i = 2^k - 1 \\
t_{i-2^{k-1}+1} & \text{if } 2^{k-1} \leq i \leq 2^k - 1
\end{cases}$

$1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, \ldots$
Luby Sequence Restart Scheduling

Luby Sequence Algorithm

```c
unsigned luby (unsigned i)
    for (unsigned k = 1; k < 32; k++)
        if (i == (1 ≪ k) - 1) then return 1 ≪ (k - 1)
    for (k = 1;; k++)
        if ((1 ≪ (k - 1)) <= i && i < (1 ≪ k) - 1) then
            return luby(i - (1 ≪ (k-1)) + 1);

limit = 512 * luby (++restarts);
... // run SAT core loop for limit conflicts
```

- Complicated, not trivial to compute
Reluctant Doubling

- A more efficient implementation of the Luby sequence
- Use the v_n of the following pair

\[
(u_1, v_1) = (1, 1) \\
(u_{n+1}, v_{n+1}) = u_n \& - u_n = v_n ? (u_n + 1, 1) : (u_n, 2v_n)
\]

- Example: (1,1), (2,1), (2,2), (3,1), (4,1), (4,2), (4,4), (5,1), ...
- Invented by Donald Knuth
Phase Saving

First implemented in RSAT (2006)
http://reasoning.cs.ucla.edu/rsat/

- Observation: Frequent *Restarts* decrease performance on some SAT instances
- Goal: Cache partial solutions to subsets of the formula and reuse them after a restart
- Idea: Remember last assignment of each variable and use it *first* in branching
- Result: *Phase Saving* stabilizes positive effect of restarts; best results in combination with *non-chronological backtracking* (later in this lecture)

Example: A and B are satisfied, search works on component C
URL http://dx.doi.org/10.1023/A:1008725524946