Last time...

- Resolution
- Tractable subclasses
- Local search

```c
Maybe[Assignment] GSAT(ClauseSet S)
{
    for i = 1 to MAX_TRIES do {
        α = random-assignment to variables in S
        for j = 1 to MAX_FLIPS do {
            if ( α satisfies all clauses in S ) return α
            x = variable that produces least number of 
                unsatisfied clauses when flipped
            flip x
        }
    }
    return Nothing  // no solution found
}
```
Open questions

- How often should the inner/outer loop be repeated?
- How good are the chances to find a satisfying assignment?
- Can the algorithm be modified to prove unsatisfiability?
- Is there a general upper bound for deciding SAT that is better than 2^n?

```c
Maybe[Assignment] GSAT(ClauseSet S)
{
    for i = 1 to MAX_TRIES do {
        \alpha = random-assignment to variables in S
        for j = 1 to MAX_FLIPS do {
            if ( \alpha satisfies all clauses in S ) return \alpha
            x = variable that produces least number of
            unsatisfied clauses when flipped
            flip x
        }
    }
    return Nothing  // no solution found
}
```
Complexity of k-SAT: Upper Bounds

<table>
<thead>
<tr>
<th></th>
<th>3-SAT</th>
<th>4-SAT</th>
<th>5-SAT</th>
<th>6-SAT</th>
<th>type</th>
<th>ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.782</td>
<td>1.835</td>
<td>1.867</td>
<td>1.888</td>
<td>det.</td>
<td>[PPZ97]</td>
<td></td>
</tr>
<tr>
<td>1.618</td>
<td>1.839</td>
<td>1.928</td>
<td>1.966</td>
<td>det.</td>
<td>[MS85]</td>
<td></td>
</tr>
<tr>
<td>1.588</td>
<td>1.682</td>
<td>1.742</td>
<td>1.782</td>
<td>prob.</td>
<td>[PPZ97]</td>
<td></td>
</tr>
<tr>
<td>1.579</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>det.</td>
<td>[Sch92]</td>
<td></td>
</tr>
<tr>
<td>1.505</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>det.</td>
<td>[Kul99]</td>
<td></td>
</tr>
<tr>
<td>1.481</td>
<td>1.6</td>
<td>1.667</td>
<td>1.75</td>
<td>det.</td>
<td>[DGH+02]</td>
<td></td>
</tr>
<tr>
<td>1.362</td>
<td>1.476</td>
<td>1.569</td>
<td>1.637</td>
<td>prob.</td>
<td>[PPSZ98]</td>
<td></td>
</tr>
<tr>
<td>1.334</td>
<td>1.5</td>
<td>1.6</td>
<td>1.667</td>
<td>prob.</td>
<td>[Sch99]</td>
<td></td>
</tr>
<tr>
<td>1.3302</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>prob.</td>
<td>[HSSW02]</td>
<td></td>
</tr>
<tr>
<td>1.3290</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>prob.</td>
<td>[BS03]</td>
<td></td>
</tr>
<tr>
<td>1.324</td>
<td>1.474</td>
<td>-</td>
<td>-</td>
<td>prob.</td>
<td>[*]</td>
<td></td>
</tr>
</tbody>
</table>

Algorithm of Dantsin et al.

```c
Maybe[Assignment] Local-Search(ClauseSet S)
{
    for i = 1 to MAX_TRIES do
        α = random-assignment
        for j = 1 to MAX_FLIPS do
            if α satisfies all clauses in S return α
                choose variable x to flip
                flip x
        return Nothing
}
```

- Variant of local search algorithmus (s.o.)
- Input: Formula in k-CNF with n variables.
- Idea:
 1. Make inner loop deterministic: systematically check all assignments in the „neighborhood“ of α.
 2. Choose starting assignment α in outer loop deterministically.
Idea 1: Hamming Ball Algorithm

- Hamming distance between two assignments α, β:

 Def. $d(\alpha, \beta) := |\{x \mid \alpha(x) \neq \beta(x)\}|$

 Ex. $\alpha=(0,1,1,0,0)$, $\beta=(1,0,1,0,1)$, $d(\alpha, \beta) = 3$

- Hamming ball of radius r around α:

 Def. $H(\alpha, r) := \{ \beta \mid d(\alpha, \beta) \leq r \}$

- Volume $V(r)$ of the Hamming ball: (given n variables, i.e. assignments are vectors of length n):

 $$V(r) := |H(\alpha, r)| = \sum_{i=0}^{r} \binom{n}{i} \quad \text{independent of } \alpha.$$

 Define **normalized radius** $\rho := r/n$ (i.e. $0 \leq \rho \leq 1$)
Illustration: Hamming Ball

Example: $n=4$

Ball around $\alpha=(0001)$ with radius 1 and radius 2.
Hamming Ball Algorithm

- Known approximation of the Hamming ball volume (from information theory, Shannon):

\[
\frac{1}{\sqrt{8n\rho(1 - \rho)}} 2^{h(\rho)n} \leq V(r) \leq 2^{h(\rho)n}
\]

where \(h(\rho) := -\rho \log \rho - (1 - \rho) \log(1 - \rho) \)

(Entropy function; \(\log = \) logarithm for base 2).

- I.e.: \(V(\rho n) \approx 2^{h(\rho)n} \) (within polynomial factor)
Search in Hamming Ball

Maybe[Assignment] HB-Search(α,r)
{
 if(α ⊨ F) then return α
 if (r = 0) return Nothing
 choose C=(L₁ ∨ ... ∨ Lₖ) with α(C)=0
 for i = 1 to k do
 αᵢ = α with α(Lᵢ)=1
 β = HB-Search(αᵢ, r-1)
 if(β ≠ Nothing) return β
 return Nothing
}

- Run time HB-Search: \(k^r \)
- Note: \(k^r \) can be considerably smaller than \(V(r) \).
 - E.g.: \(k = 3, r = n/2 \):
 \[V(r) = 2^{n-1}, \quad k^r = 3^{n/2} \approx 1.7321^n \]
Search in Hamming Ball

- HB-Search provides simple deterministic algorithm for 3-SAT:
 - Execute two HB searches around $\alpha_0=(0,...,0)$ and $\alpha_1=(1,...,1)$ with radius $n/2$.
 - Runtime (as seen): 1.7321^n

- Can we improve that?
 - Idea: Choose radius $r = \rho n$ with $\rho<1/2$.
 - Of course, more than two starting points for α in the outer loop are needed then.
Probabilistic Variant of HB SLS Algorithm

```
Maybe[Assignment] Local-Search-HB-Prob
{
    for i = 1 to w do
        α_i = random-assignment
        β = HB-Search(α_i, ρ · n)
        if(β ≠ Nothing) return β
    return Nothing
}
```

- Choose α_i uniformly and independently at random from the 2^n possibilities, w iterations.
- Runtime: $w \cdot k^{\rho n}$.
- Goal: Choose w and ρ such that (a) error probability is neglectably small and (b) runtime is optimized.
Probabilistic Algorithm: Error Probability (I)

- Only possible error: F satisfiable, algorithm doesn’t find a satisfying assignment
- Assumption: F satisfiable, \(\alpha \nvDash F \).
- HB-Search\((\alpha_i, \rho n)\) finds \(\alpha \), if \(\alpha \in H(\alpha_i, \rho n) \).
- Probability for that: \(V(\rho n) \cdot 2^{-n} \)
 - With Shannon approximation \(V(\rho n) \approx 2^{h(\rho)n} \): probability approx.
 \[2^{h(\rho)n} \cdot 2^{-n} = 2^{h(\rho)n-n} = 2^{-(1-h(\rho))n} \]
- Probability that \(\alpha \) is not found in \(w \) iterations:
 \[(1 - 2^{-(1-h(\rho))n})^w \leq e^{-w \cdot 2^{-(1-h(\rho))n}} \]
 (with approximation \(1+x \leq e^x \) for all \(x \))
Error Probability and Runtime Optimization

Probability that α is not found in w iterations:

$$\left(1 - 2^{-\left(1-h(\rho)\right)n}\right)^w \leq e^{-w \cdot 2^{-\left(1-h(\rho)\right)n}}$$

(with approximation $1+x \leq e^x$ for all x)

If error shall be below e^{-c}: $w = c \cdot 2^{\left(1-h(r)\right)n}$ iterations needed.

Runtime thus: (within polynomial factor):

$$w \cdot k^{\rho n} \approx \left(2^{\left(1-h(\rho)\right)} \cdot k^\rho\right)^n = \left(2 \cdot \rho^\rho \cdot (1 - \rho)^{(1-\rho)} \cdot k^\rho\right)^n \quad (*)$$

(with def. entropy: $h(\rho) = -\rho \log \rho - (1 - \rho) \log(1 - \rho)$)

Minimize runtime by differentiating (*) w.r.t. ρ and solving for ρ.
Result: $\rho = 1/(k+1)$.

Substituing that in (*) provides runtime:

$$\left(\frac{2k}{k+1}\right)^n$$
Result for Probabilistic Algorithm

- Runtime: \(\left(\frac{2k}{k+1} \right)^n \)

- Base for small values of \(k \):

<table>
<thead>
<tr>
<th>k</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2k/(k+1)</td>
<td>1.5</td>
<td>1.6</td>
<td>1.66667</td>
<td>1.71429</td>
<td>1.75</td>
</tr>
</tbody>
</table>

- Next step: Derandomize this algorithm (i.e. outer loop)
Covering Codes

- **Derandomization:** Deterministic algorithm for selecting starting assignments α_i.
- **Definition:** A set C of assignments is a covering code of radius r, if for each assignment α: $\alpha \in H(\gamma, r)$ for at least one $\gamma \in C$.
- **Example:**

![Diagram of a covering code of radius 1.](image)

Covering code of radius 1.
Construction of Covering Codes

Problem is a special case of SET-COVER:

- Given: Set S and family $F \subseteq 2^S$ of subsets of S
- Wanted: Subset $C \subseteq F$, which covers S, i.e., $S = \bigcup C$
- Goal: Minimize $|C|$

Greedy algorithm provides $\log|S|$-approximation for SET-COVER
Construction of Covering Codes

- Problem: construction of covering codes
 - Given: Set S and family $F \subseteq 2^S$ of subsets of S
 - Wanted: Subset $C \subseteq F$, which covers S, i.e., $S = \bigcup C$
 - Goal: Minimize $|C|$
 - Set of all possible assignments α
 - Hamming balls of radius r
 - Hamming balls chosen by the algorithm

- Greedy algorithm provides $\log|S|$-approximation for SET-COVER
Greedy algorithm for SET-COVER

1. Set $C = \emptyset$.
2. As long as there are not-covered elements in S:
 a) Choose $c \in F$, covering largest number of yet not-covered elements from S.
 b) Add c to C.
3. If $\bigcup C = S$, then C is a solution; otherwise none exists.

Known:

Result of greedy alg. is $\log|S|$-approximation for SET-COVER, i.e.
$|C| \leq \log|S| \cdot |C^*|$, where C^* is optimal solution.
(in our case: $|S| = 2^n$, i.e. $\log|S| \in O(n)$)

Needed for approximation of $|C|$:

Upper bound for C^*
Upper Bound for C^*

- Obviously, for all covering codes C (for a given radius r) the following holds: $|C| \geq 2^n/V(r)$.

- Next lemma: optimal code is at most by a factor of n larger.
Lemma: Size of Optimal Covering Code

For all n and $r = \rho n$ with $0 \leq \rho \leq 1/2$, there is a covering code for radius r
of size $s := n \cdot \sqrt{8n\rho(1-\rho)} \cdot 2^{(1-h(\rho))n}$.

Proof: probabilistic method

A randomly selected set of s assignments is with high probability a covering code. Thus, in particular, such a code must exist.
Proof of Lemma

- β fixed assignment, α selected at random.
- Then: $\beta \in H(\alpha, r)$ with probability $V(r)/2^n$.
- C: set of s independently selected random assignments.
- Then: Probability that β is not covered by C:

$$
\left(1 - \frac{V(r)}{2^n}\right)^s \leq e^{-s \frac{V(r)}{2^n}} \leq e^{-s \frac{2^{(h(\rho)-1)n}}{\sqrt{8n\rho(1-\rho)}}} \leq e^{-n}
$$

(with approximation $1 + x \leq e^x$ for all x, $V(r) \geq \frac{2^{h(\rho)n}}{\sqrt{8n\rho(1-\rho)}}$
and $s = n \cdot \sqrt{8n\rho(1-\rho)} \cdot 2^{(1-h(\rho))n}$)

- In total: probability that C is covering code:

$$
\geq 1 - 2^n \cdot e^{-n} \quad \text{(approaches 1 for } n \rightarrow \infty)\]

Carsten Sinz, Tomas Balyo – SAT Solving
Analysis of the Greedy Algorithm

- Optimal code: $|C^*| \leq s$
- Greedy algorithm:
 - $|C| \leq O(n) \cdot s = O((5/2)^n) \cdot 2^{(1-h(\rho))n}$
 - Runtime of greedy algorithm: 2^{3n} (without proof)
- Result: $|C|$ ok, but runtime of SET-COVER algorithm too high!
- Idea:
 - Reduce runtime by allowing increased $|C|$.

Carsten Sinz, Tomas Balyo – SAT Solving
Block Codes

- Idea:
 - Let C be a covering code of radius r for n variables
 - Obtain covering code C^d of radius $d \cdot r$ for $d \cdot n$ variables by repeating covering code C for d times

- Example:
 - $d=4$, $|C|=3$: covering code for $4n$ variables with $|C|^4$ elements.

- In general:
 - Block code C^d has size $|C|^d$ and radius $r \cdot d$.
Deterministic Hamming-Ball Algorithm

- Choose \(d=6 \) and use block code \(C^6 \).
- Generate covering code \(C \) for \(n/6 \) variables with radius \(\rho n/6 \) using greedy SET-COVER algorithm
 - Runtime: \(2^{3n/6} \leq 1.414^n \)
- Size of covering code \(C^6 \): \[
\left(O\left(\frac{n}{6}\right)^{5/2} \cdot 2^{\left(1-h(\rho)\right)n/6}\right)^6 = O(n^{15}) \cdot 2^{\left(1-h(\rho)\right)n}
\]
 - Same as non-blockcode, ignoring polynomial factor

Complete run time of algorithm:
1. Generating covering code: \(O(1.414^n) \)
 (once before start of Hamming-ball search)
2. Hamming-ball search with radius \(r = n/(1+k) \): \(O(2k/(k+1))^n \)

--- The latter dominates for \(k \geq 3 \), thus: \(O(2k/(k+1))^n \) (i.e. same run-time as probabilistic algorithm, e.g. \(1.5^n \) for 3-SAT)
Further Improvements

- Hamming-ball search can also be done in time 2.848^r (instead of 3^r).
 - Refined algorithm: Dantsin et al., 2002.
- Therefore:
 - Run-time of 1.481^n for deterministic 3-SAT algorithm (best upper bound for deterministic 3-SAT so far)