Lecture Outline

- Basic SAT algorithms
 - Stochastic local search
 - Davis-Putnam algorithm
 - DPLL algorithm
 - Stålmarck’s method
Repetition: Resolution/Saturation

Saturation Algorithm

- **INPUT**: CNF formula F
- **OUTPUT**: $\{SAT, UNSAT\}$

```plaintext
while (true) do
    $R = resolveAll(F)$
    if $(R \cap F \neq R)$ then $F = F \cup R$
    else break
if ($\bot \in F$) then return UNSAT else return SAT
```

Properties of the saturation algorithm:
- it is sound and complete – always terminates and answers correctly
- has exponential time and space complexity
Question: Can we do better than saturation-based resolution?

- Avoid exponential space complexity
- Improve average-case complexity (for important problem classes)
Stochastic Local Search (SLS)

SAT as an optimization problem: minimize the number of unsatisfied clauses

Start with a complete random assignment \(\alpha \):

\[
\begin{array}{cccccccccccc}
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]

Repeatedly flip (randomly/heuristically chosen) variables to decrease the number of unsatisfied clauses:

\[
\begin{array}{cccccccccccc}
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]
Local search algorithms are incomplete: they cannot show unsatisfiability!

Many variants of local search algorithms

Main question: Which variable should be flipped next?
 - select variable from an unsatisfied clause
 - select variable that increases the number of satisfied clauses most

How to avoid local minima?
Maybe[Assignment] \(\text{GSAT}(\text{ClauseSet } S) \)

\{
\text{for } i = 1 \text{ to } \text{MAXTRIES} \text{ do } \{
\quad \alpha = \text{random-assignment to variables in } S
\text{for } j = 1 \text{ to } \text{MAXFLIPS} \text{ do } \{
\quad \text{if (} \alpha \text{ satisfies all clauses in } S \text{) return } \alpha
\quad x = \text{variable that produces least number of }
\quad \text{unsatisfied clauses when flipped}
\quad \text{flip } x
\}
\}
\text{return Nothing} \quad \text{// no solution found}
\}
SLS: Illustration

[Source: Alan Mackworth, UBC, Canada]
Walksat [2]

- Variant of GSAT
- Try to avoid local minima by introducing "random noise"
 - Select unsatisfied clause C at random
 - If by flipping a variable $x \in C$ no new unsatisfied clauses emerge, flip x
 - Otherwise:
 - With probability p select a variable $x \in C$ at random
 - With probability $1 - p$ select a variable that changes as few as possible clauses from satisfied to unsatisfied when flipped
Consider a flip taking α to α'.

- **breakcount**: number of clauses satisfied in α, but not in α'.
- **makecount**: number of clauses unsatisfied in α, but satisfied in α'.
- **diffscore**: number of unsatisfied clauses in α minus number of clauses unsatisfied in α'.

Typically, **breakcount**, **makecount** and **diffscore** are updated after each flip.

Question: How can we do this efficiently?
GSAT and Walksat Flip Heuristics

- GSAT: select variable with highest **diffscore**
- Walksat:
 - First randomly select unsatisfied clause C
 - If there is a variable with **breakcount** 0 in C, select it
 - otherwise with probability p select a random variable from C, and with probability $1 - p$ a variable with minimal **breakcount** from C
Runtime Comparison Walksat vs. GSAT

Table 4: Comparing an efficient complete method (DP) with local search strategies on circuit synthesis problems. (Timings in seconds.)

<table>
<thead>
<tr>
<th>formula</th>
<th>id</th>
<th>vars</th>
<th>clauses</th>
<th>DP time</th>
<th>GSAT+w time</th>
<th>WSAT time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2bitadd.12</td>
<td>708</td>
<td>1702</td>
<td>*</td>
<td>0.081</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>2bitadd.11</td>
<td>649</td>
<td>1562</td>
<td>*</td>
<td>0.058</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>3bitadd.32</td>
<td>8704</td>
<td>32316</td>
<td>*</td>
<td>94.1</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>3bitadd.31</td>
<td>8432</td>
<td>31310</td>
<td>*</td>
<td>456.6</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>2bitcomp.12</td>
<td>300</td>
<td>730</td>
<td>23096</td>
<td>0.009</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>2bitcomp.5</td>
<td>125</td>
<td>310</td>
<td>1.4</td>
<td>0.009</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Comparing DP with local search strategies on circuit diagnosis problems by Larrabee (1989). (Timings in seconds.)

<table>
<thead>
<tr>
<th>formula</th>
<th>id</th>
<th>vars</th>
<th>clauses</th>
<th>DP time</th>
<th>GSAT+w time</th>
<th>WSAT time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssa7552-038</td>
<td>1501</td>
<td>3575</td>
<td>7</td>
<td>129</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>ssa7552-158</td>
<td>1363</td>
<td>3034</td>
<td>*</td>
<td>90</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ssa7552-159</td>
<td>1363</td>
<td>3032</td>
<td>*</td>
<td>14</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>ssa7552-160</td>
<td>1391</td>
<td>3126</td>
<td>*</td>
<td>18</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

[Source: Selman, Kautz, Cohen Local Search Strategies for Satisfiability Testing, 1993]
Davis-Putnam Algorithm [3]

- Presented in 1960 as a procedure for first-order (predicate) logic
- Procedure to check satisfiability of a formula F in CNF
- Three (deduction) rules:
 1. **Unit propagation**: if there is a unit clause $C = \{l\}$ in F, simplify all other clauses containing l
 2. **Pure literal elimination**: If a literal l never occurs negated in F, add the clause $\{l\}$ to F
 3. **Case splitting**: Assume that F is put in the form $(A \lor l) \land (B \lor \lnot l) \land R$, where A, B, and R are free of l. Replace F by the clausification of $(A \lor B) \land R$
- Apply deduction rules (giving priority to rules 1 and 2) until no further rule is applicable
The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on which Gilmore’s routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was worked successfully by hand computation using the present method in 30 minutes.
DPLL Algorithm: Outline

- **DPLL**: Davis-Putnam-Logemann-Loveland [4]
- Algorithmic improvements over DP algorithm
- **Basic idea**: case splitting and simplification
- **Simplification**: unit propagation and pure literal deletion
- **Unit propagation**: 1-clauses (unit clauses) fix variable values: if \(\{x\} \in S \), in order to satisfy \(S \), variable \(x \) must be set to 1.
- **Pure literal deletion**: If variable \(x \) occurs only positively (or only negatively) in \(S \), it may be fixed, i.e. set to 1 (or 0).
Let $F_0 = \{\{x, y\}, \{\neg x, y, \neg z\}, \{\neg x, z, u\}, \{x, \neg u\}\}$.

All clauses containing y may be deleted, as y occurs only positively in F. This yields:

$$F_1 = \{\{\neg x, z, u\}, \{x, \neg u\}\}$$

Each solution α_1 of F_1 can be extended to a solution α_0 of F_0 by setting $\alpha_0(y) = 1$.

Moreover, if F_1 does not possess a solution, then so does F_0.

Repeating yields $F_2 = \{\{x, \neg u\}\}$ and $F_3 = \emptyset$, thus F_0 is satisfiable.
DPLL Algorithm

```java
boolean DPLL(ClauseSet S)
{
    while (S contains a unit clause \{L\}) {
        delete from S clauses containing L;  // unit-subsumption
        delete \neg L from all clauses in S;   // unit-resolution
    }
    if (\bot \in S) return false;         // empty clause?
    while (S contains a pure literal L)
    {
        delete from S all clauses containing L;
        if (S = \emptyset) return true;     // no clauses?
        choose a literal L occurring in S;   // case-splitting
        if (DPLL(S \cup \{L\}) return true;  // first branch
        else if (DPLL(S \cup \{\neg L\}) return true;  // second branch
        else return false;
    }
}
```
DPLL: Implementation Issues

- How can we implement unit propagation efficiently?
- Which literal \(L \) to use for case splitting?
- How can we efficiently implement the case splitting step?
boolean mDPLL(ClauseSet S, PartialAssignment α) {
 while ((S, α) contains a unit clause \{L\}) {
 add \{L = 1\} to α
 }
 if (a literal is assigned both 0 and 1 in α) return false;
 if (all literals assigned) return true;
 choose a literal L not assigned in α occurring in S;
 if (mDPLL(S, α \cup \{L = 1\}) return true;
 else if (mDPLL(S, α \cup \{L = 0\}) return true;
 else return false;
}

(S, α): clause set S as “seen” under partial assignment α
Stålmarck’s Method [5]

- **Input**: Arbitrary formula F in propositional logic (need not be in CNF, \Rightarrow and \Leftrightarrow also allowed)
- **Goal**: Show unsatisfiability of F
- **Preprocessing**: Decompose formula tree into simple equations (triplets) T and a literal equivalence class R. ($R \subseteq L^0 \times L^0$ where $L^0 = L \cup \{0, 1\}$, R ‘consistent’)
- **Basic processing steps**: k-saturation ($k = 0, 1, \ldots$)
 - 0-saturation: simplification with triplet rules
 - k-saturation ($k \geq 1$): case distinction, breadth-first search
- Developed by Gunnar Stålmarck (~ 1989), patented
Decomposition into Triplets

\[F = ((x \land y) \lor \neg y) \land (z \leftrightarrow y) \]

Formula tree:

Initial equival. class: \{n_1 = 0\}
(to show unsatisfiability of \(F \))

Triplets:

- \(n_1 = n_2 \land n_4 \)
- \(n_2 = n_3 \lor \neg y \)
- \(n_3 = x \land y \)
- \(n_4 = z \leftrightarrow y \)

Normalized triplets:
(only \(\land \) and \(\leftrightarrow \))

- \(n_1 = n_2 \land n_4 \)
- \(\neg n_2 = \neg n_3 \land y \)
- \(n_3 = x \land y \)
- \(n_4 = z \leftrightarrow y \)
Stålmarck’s Method: 0-Saturation

Given set of triplets T and literal equivalence class R apply derivation rules (deriving new literal equivalences):

\[
\frac{p = q \land r}{p = 1} \quad \frac{p = q \land r}{p = \neg q} \quad (A) \quad (D)
\]

\[
\frac{r = 1}{q = 1} \quad \frac{p = 0}{r = 0}
\]

\[
\frac{q = 0}{p = 0} \quad (B)
\]

\[
\frac{q = 1}{p = r} \quad (C)
\]

\[
\frac{q = r}{p = q} \quad (E)
\]

\[
\frac{q = \neg r}{p = 0} \quad (F)
\]
Stålmärck’s Method: \(k \)-Saturation

Given formula \(F \), represented as \((T, R)\) (triplets and equiv. rel.)

procedure saturate extends equivalence relation \(R \):

\[
\text{EquivRel saturate}(\text{int } k, \text{ TripletSet } T, \text{ EquivRel } R) \{
\text{if } (k = 0) \text{ return zero-saturate}(T, R)
\text{forall } x \in \text{Var}(T) \text{ not fixed in } R \text{ do }
\text{R}_0 = \text{saturate}(k - 1, T, R \cup \{x = 0\})
\text{R}_1 = \text{saturate}(k - 1, T, R \cup \{x = 1\})
R = R_0 \cap R_1
\}
\text{return } R
\]

(zero-saturate returns all-relation if inconsistency was found)
k-Saturation: Graphical Illustration

0-saturation (simplification rules)

1-saturation

2-saturation

merge relations

\[\rightarrow R_0 \quad \rightarrow R_1 \]

\[\Rightarrow \text{new } R \]
Summary: Stålmarck’s Algorithm

Input: Formula F represented as set of triplets T
(with n_1 representing top of formula tree)

Output: F satisfiable?

```java
boolean stalmarck(TripletSet T)
{
    k = 0;  R = \{n_1 = 0\}
    do {
        R = saturate(k, T, R)
        if ( R = all-relation ) return false
        else if ( R satisfies all triplets T ) return true
        else  k = k + 1
    } 
}
```
URL http://dl.acm.org/citation.cfm?id=1867135.1867203

URL http://doi.acm.org/10.1145/321033.321034
URL http://doi.acm.org/10.1145/368273.368557

URL http://dx.doi.org/10.1023/A:1008725524946