Practical SAT Solving
Lecture 2
Carsten Sinz, Tomáš Balyo | April 25, 2016
Lecture Outline

- **Encodings**
 - Arithmetic progressions
 - Graph coloring
 - Finite-domain variables
 - At-most-one constraints / cardinality constraints
 - Integer multiplication / factorization
 - Tseitin encoding for circuits

- **Later in the lecture**
 - Hardware / software verification
 - Product configuration
 - Planning
A wide variety of problems can be encoded as SAT!

- (Finite) arithmetic
- Mathematical / practical combinatorial problems
- Hardware / software verification problems
- Planning problems

Chosen encoding highly influences runtime of SAT solver

- A lot of research on good encodings
- ...but still more an art than a science
Arithmetic Progressions

Find a binary sequence x_1, \ldots, x_8 that has no three equally spaced 0s and no three equally spaced 1s.

- What about 01001011?
Arithmetic Progressions

Find a binary sequence x_1, \ldots, x_8 that has no three equally spaced 0s and no three equally spaced 1s.

- What about 01001011? No, the 1s at x_2, x_5, x_8 are equally spaced.
Arithmetic Progressions

Find a binary sequence x_1, \ldots, x_8 that has no three equally spaced 0s and no three equally spaced 1s.

- What about 01001011? No, the 1s at x_2, x_5, x_8 are equally spaced.
- 6 Solutions:
 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.
Arithmetic Progressions

Find a binary sequence x_1, \ldots, x_8 that has no three equally spaced 0s and no three equally spaced 1s.

- What about 01001011? No, the 1s at x_2, x_5, x_8 are equally spaced.
- 6 Solutions:
 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.
- Extending the problem to 9 digits, no solutions remain. How can we show this with a SAT solver?
Arithmetic Progressions

Find a binary sequence x_1, \ldots, x_8 that has no three equally spaced 0s and no three equally spaced 1s.

- What about 01001011? No, the 1s at x_2, x_5, x_8 are equally spaced.
- 6 Solutions:
 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.
- Extending the problem to 9 digits, no solutions remain. How can we show this with a SAT solver?
- Encode what’s forbidden: $x_2 x_5 x_8 \neq 111$ is the same as $(\overline{x_2} \lor \overline{x_5} \lor \overline{x_8})$.
Arithmetic Progressions

Find a binary sequence x_1, \ldots, x_8 that has no three equally spaced 0s and no three equally spaced 1s.

- What about 01001011? No, the 1s at x_2, x_5, x_8 are equally spaced.
- 6 Solutions:
 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.
- Extending the problem to 9 digits, no solutions remain. How can we show this with a SAT solver?
- Encode what’s forbidden: $x_2 x_5 x_8 \neq 111$ is the same as $(\overline{x_2} \lor \overline{x_5} \lor \overline{x_8})$.
- Writing, e.g., $\overline{258}$ for the clause $(\overline{x_2} \lor \overline{x_5} \lor \overline{x_8})$, we arrive at 32 clauses for the 9 digit sequence:
 123, 234, \ldots, 789, 135, 246, \ldots, 579, 147, 258, 369, 159,
 $\overline{123}, \overline{234}, \ldots, \overline{789}, \overline{135}, \overline{246}, \ldots, \overline{579}, \overline{147}, \overline{258}, \overline{369}, \overline{159}$.

Introduction Encodings
Carsten Sinz, Tomáš Balyo – SAT Solving
April 25, 2016
4/22
Theorem (van der Waerden)

If \(n \) is sufficiently large, every sequence \(x_1, \ldots, x_n \) of numbers \(0 \leq x_i < r \) contains a number that occurs at least \(k \) times equally spaced.

- The smallest such number is the van der Waerden number \(W(r, k) \).
- We have seen that \(W(2, 3) = 9 \).
- For larger \(r, k \) the numbers are only partially known.
- E.g., \(W(2, 6) = 1132 \) was shown in 2008 by Kouril and Paul [1] (with the help of a SAT solver!), but \(W(2, 7) \) is yet unknown.
- \(2^{2r^{2k+9}} \) is an upper bound for \(W(r, k) \) (shown in 2001 by Gowers [2]).
Graph Coloring

- McGregor graph (of order 10): planar, 110 nodes.
- Claim: Cannot be colored with less than 5 colors. (Scientific American, 1975, Martin Gardner’s column “Mathematical Games”)
Graph Coloring

- McGregor graph (of order 10): planar, 110 nodes.
- Claim: Cannot be colored with less than 5 colors. (Scientific American, 1975, Martin Gardner’s column “Mathematical Games”)
Graph Coloring

- McGregor graph (of order 10): planar, 110 nodes.
- Claim: Cannot be colored with less than 5 colors. (Scientific American, 1975, Martin Gardner’s column “Mathematical Games”)
Definition: Graph coloring

Given an undirected graph $G = (V, E)$, a graph coloring (proper vertex coloring) assigns a color to each node, such that all adjacent nodes have a different color. A graph coloring using at most k colors is called a k-coloring. The Graph Coloring Problem asks whether a k-coloring for G exists.
Definition: Graph coloring

Given an undirected graph $G = (V, E)$, a graph coloring (proper vertex coloring) assigns a color to each node, such that all adjacent nodes have a different color. A graph coloring using at most k colors is called a k-coloring. The Graph Coloring Problem asks whether a k-coloring for G exists.

- SAT encoding: use $k \cdot |V|$ Boolean variables v_j for $v \in V$, $1 \leq j \leq k$, where v_j is true, if node v gets color j.

Definition: Graph coloring

Given an undirected graph \(G = (V, E) \), a graph coloring (proper vertex coloring) assigns a color to each node, such that all adjacent nodes have a different color. A graph coloring using at most \(k \) colors is called a \(k \)-coloring. The Graph Coloring Problem asks whether a \(k \)-coloring for \(G \) exists.

- SAT encoding: use \(k \cdot |V| \) Boolean variables \(v_j \) for \(v \in V, 1 \leq j \leq k \), where \(v_j \) is true, if node \(v \) gets color \(j \).
- Clauses?
Graph Coloring: Encoding in SAT

Definition: Graph coloring

Given an undirected graph \(G = (V, E) \), a graph coloring (proper vertex coloring) assigns a color to each node, such that all adjacent nodes have a different color. A graph coloring using at most \(k \) colors is called a \(k \)-coloring. The Graph Coloring Problem asks whether a \(k \)-coloring for \(G \) exists.

- SAT encoding: use \(k \cdot |V| \) Boolean variables \(v_j \) for \(v \in V, 1 \leq j \leq k \), where \(v_j \) is true, if node \(v \) gets color \(j \).
- Clauses?

\[
(v_1 \lor \cdots \lor v_k) \quad \text{for } v \in V \quad \text{("every node gets a color")}
\]
Graph Coloring: Encoding in SAT

Definition: Graph coloring

Given an undirected graph \(G = (V, E) \), a graph coloring (proper vertex coloring) assigns a color to each node, such that all adjacent nodes have a different color. A graph coloring using at most \(k \) colors is called a \(k \)-coloring. The Graph Coloring Problem asks whether a \(k \)-coloring for \(G \) exists.

- SAT encoding: use \(k \cdot |V| \) Boolean variables \(v_j \) for \(v \in V, 1 \leq j \leq k \), where \(v_j \) is true, if node \(v \) gets color \(j \).

- Clauses?

\[
(v_1 \lor \cdots \lor v_k) \text{ for } v \in V \quad \text{ (“every node gets a color”)}
\]

\[
(u_j \lor v_j) \text{ for } u \rightarrow v, 1 \leq j \leq k \quad \text{ (“adjacent nodes have diff. colors”)}
\]
Definition: Graph coloring

Given an undirected graph $G = (V, E)$, a graph coloring (proper vertex coloring) assigns a color to each node, such that all adjacent nodes have a different color. A graph coloring using at most k colors is called a k-coloring. The Graph Coloring Problem asks whether a k-coloring for G exists.

- **SAT encoding:** use $k \cdot |V|$ Boolean variables v_j for $v \in V$, $1 \leq j \leq k$, where v_j is true, if node v gets color j.

- **Clauses?**

 $(v_1 \lor \cdots \lor v_k)$ for $v \in V$ \hspace{1cm} (“every node gets a color”)

 $(u_j \lor \bar{v_j})$ for $u \dashv v$, $1 \leq j \leq k$ \hspace{1cm} (“adjacent nodes have diff. colors”)

- **What about multiple colors for a node?**
Graph Coloring: Encoding in SAT

Definition: Graph coloring

Given an undirected graph $G = (V, E)$, a graph coloring (proper vertex coloring) assigns a color to each node, such that all adjacent nodes have a different color. A graph coloring using at most k colors is called a k-coloring. The Graph Coloring Problem asks whether a k-coloring for G exists.

- **SAT encoding:** use $k \cdot |V|$ Boolean variables v_j for $v \in V$, $1 \leq j \leq k$, where v_j is true, if node v gets color j.
- **Clauses?**

 $(v_1 \lor \cdots \lor v_k)$ for $v \in V$ \hspace{1cm} (“every node gets a color”)

 $(\overline{u_j} \lor v_j)$ for $u \rightleftarrows v$, $1 \leq j \leq k$ \hspace{1cm} (“adjacent nodes have diff. colors”)

- **What about multiple colors for a node?** → At-most-one constraints
Graph Coloring: Example

- \(V = \{ u, v, w, x, y \} \)
- Colors: red (=1), green (=2), blue (=3)
- Clauses:
 - “every node gets a color”
 \[
 (u_1 \lor u_2 \lor u_3) \\
 \vdots \\
 (y_1 \lor y_2 \lor y_3)
 \]
 - “adjacent nodes have different colors”
 \[
 (\overline{u}_1 \lor \overline{v}_1) \land \cdots \land (\overline{u}_3 \lor \overline{v}_3) \\
 \vdots \\
 (\overline{x}_1 \lor \overline{y}_1) \land \cdots \land (\overline{x}_3 \lor \overline{y}_3)
 \]
Graph Coloring: Example

- $V = \{u, v, w, x, y\}$
- Colors: red (=1), green (=2), blue (=3)
- Clauses:
 - "every node gets a color"
 \[(u_1 \lor u_2 \lor u_3) \land \ldots \land (u_3 \lor u_3)\]
 - "adjacent nodes have different colors"
 \[(\overline{u}_1 \lor \overline{v}_1) \land \ldots \land (\overline{u}_3 \lor \overline{v}_3)\]
 \[(\overline{x}_1 \lor \overline{y}_1) \land \ldots \land (\overline{x}_3 \lor \overline{y}_3)\]
Finite-Domain Variables

- Common in combinatorial problems: finite domain variables, e.g.:
 \[x \in \{ v_1, \ldots, v_n \} \]
- Relationships between them expressed as equality-formulas, e.g.:
 \[x = v_3 \Rightarrow y \neq v_2. \]
Finite-Domain Variables

- Common in combinatorial problems: finite domain variables, e.g.:
 \[x \in \{ v_1, \ldots, v_n \} \]
- Relationships between them expressed as equality-formulas, e.g.:
 \[x = v_3 \Rightarrow y \neq v_2. \]
- Direct encoding / “one-hot-encoding”:
 - Boolean variables \(x_v \): “x takes value v”
 - Must encode that each variable takes exactly one value from its domain (using at-least-one/at-most-one constraints)
 - Encoding of variables’ constraints simple
Finite-Domain Variables

- Common in combinatorial problems: finite domain variables, e.g.:
 \[x \in \{ v_1, \ldots, v_n \} \]

- Relationships between them expressed as equality-formulas, e.g.:
 \[x = v_3 \Rightarrow y \neq v_2. \]

- Direct encoding / “one-hot-encoding”:
 - Boolean variables \(x_v \): “\(x \) takes value \(v \)”
 - Must encode that each variable takes exactly one value from its domain (using at-least-one/at-most-one constraints)
 - Encoding of variables’ constraints simple

- Log-encoding / binary encoding:
 - Boolean variables \(b^x_i \) for \(0 \leq i < \lceil \log_2 n \rceil \)
 - Each value gets assigned a binary number, e.g.
 \[v_1 \rightarrow 00, \; v_2 \rightarrow 01, \; v_3 \rightarrow 10 \]
 - Inadmissible values must be excluded, e.g.:
 \[x \in \{ v_1, v_2, v_3 \} \] requires \((b^x_0 \lor b^x_1) \)
 - Encoding of constraints can become complicated
Comparing Encodings

- Size: number of variables, number of clauses
- Propagation properties
At-Most-One Constraints

Definition

\(\text{AtMostOne}(x_1, \ldots, x_n) \) is the constraint that no more than 1 variable / literal out of \(x_1, \ldots, x_n \) is set to True.
At-Most-One Constraints

Definition

AtMostOne\(x_1, \ldots, x_n\) is the constraint that no more than 1 variable / literal out of \(x_1, \ldots, x_n\) is set to True.

- Alternative notations: \(\leq 1 (x_1, \ldots, x_n)\), \(x_1 + \cdots + x_n \leq 1\)
At-Most-One Constraints

Definition

AtMostOne(x_1, \ldots, x_n) is the constraint that no more than 1 variable / literal out of x_1, \ldots, x_n is set to True.

- Alternative notations: $\leq 1 (x_1, \ldots, x_n)$, $x_1 + \cdots + x_n \leq 1$
- Naive (pairwise) encoding: add clauses $(\overline{x_i} \lor \overline{x_j})$ for $1 \leq i < j \leq n$
 - Results in $\binom{n}{2} = \frac{n \cdot (n-1)}{2}$ clauses
At-Most-One Constraints

Definition

\text{AtMostOne}(x_1, \ldots, x_n) \text{ is the constraint that no more than 1 variable / literal out of } x_1, \ldots, x_n \text{ is set to True.}

- Alternative notations: \(\leq 1 (x_1, \ldots, x_n), \quad x_1 + \cdots + x_n \leq 1 \)
- Naive (pairwise) encoding: add clauses \((\overline{x_i} \lor \overline{x_j})\) for \(1 \leq i < j \leq n\)
 - Results in \(\binom{n}{2} = \frac{n \cdot (n-1)}{2}\) clauses
- Can we do better?
At-Most-One Constraints

Definition

AtMostOne\((x_1, \ldots, x_n)\) is the constraint that no more than 1 variable / literal out of \(x_1, \ldots, x_n\) is set to True.

- Alternative notations: \(\leq 1(x_1, \ldots, x_n)\), \(x_1 + \cdots + x_n \leq 1\)
- Naive (pairwise) encoding: add clauses \((\overline{x_i} \lor \overline{x_j})\) for \(1 \leq i < j \leq n\)
 - Results in \(\binom{n}{2} = \frac{n \cdot (n-1)}{2}\) clauses
- Can we do better? Yes!
At-Most-One Constraints

Definition

AtMostOne\((x_1, \ldots, x_n)\) is the constraint that no more than 1 variable / literal out of \(x_1, \ldots, x_n\) is set to True.

- Alternative notations: \(\leq 1 \ (x_1, \ldots, x_n), \quad x_1 + \cdots + x_n \leq 1\)
- Naive (pairwise) encoding: add clauses \((\overline{x_i} \lor \overline{x_j})\) for \(1 \leq i < j \leq n\)
 - Results in \(\binom{n}{2} = \frac{n \cdot (n-1)}{2}\) clauses
- Can we do better? Yes!
- Encodings and their complexity (in number of clauses) [3]:
 - Pairwise encoding: \(O(n^2)\)
 - Sequential counter: \(O(n)\)
 - Bitwise encoding: \(O(n \log n)\)
Cardinality Constraints: Motivation

Is there a 4-coloring of the McGregor graph that uses one color at most 7 times?
Cardinality Constraints: Motivation

Is there a 4-coloring of the McGregor graph that uses one color at most 7 times?
Definition

\[\leq k(x_1, \ldots, x_n) \] is the constraint that no more than \(k \) variables / literals out of \(x_1, \ldots, x_n \) are set to True.
Cardinality Constraints

Definition

\[\leq k \left(x_1, \ldots, x_n \right) \] is the constraint that no more than \(k \) variables / literals out of \(x_1, \ldots, x_n \) are set to True.

- Naive encoding: add clauses \(\left(x_{i_1} \lor \cdots \lor x_{i_{k+1}} \right) \) for \(1 \leq i_1 < \cdots < i_{k+1} \leq n \)

- Results in \(\binom{n}{k} \) clauses
Cardinality Constraints

Definition

\[\leq k(x_1, \ldots, x_n) \] is the constraint that no more than \(k \) variables / literals out of \(x_1, \ldots, x_n \) are set to True.

- Naive encoding: add clauses \((\overline{x_{i_1}} \lor \cdots \lor \overline{x_{i_k+1}})\) for \(1 \leq i_1 < \cdots < i_{k+1} \leq n \)
 - Results in \(\binom{n}{k} \) clauses
- Better encodings:
 - Sequential counter: \(\mathcal{O}(n \cdot k) \)
 - Parallel counter: \(\mathcal{O}(n) \)
Cardinality Constr: Sequential Counter

\[
\begin{align*}
\neg x_1 & \lor s_{1,1} \\
\neg s_{1,j} & \quad \text{for } 1 < j \leq k \\
\neg x_i & \lor s_{i,1} \\
\neg s_{i-1,1} & \lor s_{i,1} \\
\neg x_i & \lor \neg s_{i-1,j-1} \lor s_{i,j} \\
\neg s_{i-1,j} & \lor s_{i,j} \\
\neg x_i & \lor \neg s_{i-1,k} \\
\neg x_n & \lor \neg s_{n-1,k} \\
\end{align*}
\]

\[
\begin{align*}
\text{for } 1 < j \leq k & \quad \text{for } 1 < i < n
\end{align*}
\]
Problem

Given a formula F in propositional logic with operations \land, \lor and \neg, how can it be encoded in CNF?

Example

$F = \neg((\neg x \lor y) \land (\neg z \land \neg(x \land \neg w)))$

First approach: convert to NNF (Negation Normal Form), then apply distributive law.

Example (cont’d)

$F_{NNF} = (x \land \neg y) \lor z \lor (x \land \neg w)$

$F_{CNF} = (x \lor z) \land (x \lor z \lor \neg w) \land (\neg y \lor z \lor x) \land (\neg y \lor z \lor \neg w)$

Problem: Applying the distributive law may result in an exponential blow-up.
Encoding Circuits

Problem
Given a formula F in propositional logic with operations \land, \lor and \neg, how can it be encoded in CNF?

Example

$$F = \neg((\neg x \lor y) \land (\neg z \land \neg(x \land \neg w)))$$

First approach: convert to NNF (Negation Normal Form), then apply distributive law.

Example (cont'd)

- $F_{\text{NNF}} = (x \land \neg y) \lor z \lor (x \land \neg w)$
- $F_{\text{CNF}} = (x \lor z) \land (x \lor z \lor \neg w) \land (\neg y \lor z \lor \neg w)$

Problem: Applying the distributive law may result in an exponential blow-up.
Encoding Circuits

Problem

Given a formula F in propositional logic with operations \wedge, \lor and \neg, how can it be encoded in CNF?

Example

$F = \neg((\neg x \lor y) \wedge (\neg z \wedge \neg(x \wedge \neg w)))$

First approach: convert to NNF (Negation Normal Form), then apply distributive law.
Encoding Circuits

Problem
Given a formula F in propositional logic with operations \land, \lor and \neg, how can it be encoded in CNF?

Example
$F = \neg((\neg x \lor y) \land (\neg z \land \neg (x \land \neg w)))$

First approach: convert to NNF (Negation Normal Form), then apply distributive law.

Example (cont’d)

$F_{\text{NNF}} = (x \land \neg y) \lor z \lor (x \land \neg w)$
$F_{\text{CNF}} = (x \lor z) \land (x \lor z \lor \neg w) \land (\neg y \lor z \lor x) \land (\neg y \lor z \lor \neg w)$
Encoding Circuits

Problem
Given a formula F in propositional logic with operations \land, \lor and \neg, how can it be encoded in CNF?

Example
$F = \neg((\neg x \lor y) \land (\neg z \land \neg(x \land \neg w)))$

First approach: convert to NNF (Negation Normal Form), then apply distributive law.

Example (cont’d)
$F_{\text{NNF}} = (x \land \neg y) \lor z \lor (x \land \neg w)$
$F_{\text{CNF}} = (x \lor z) \land (x \lor z \lor \neg w) \land (\neg y \lor z \lor x) \land (\neg y \lor z \lor \neg w)$

Problem: Applying the distributive law may result in an exponential blow-up.
Tseitin Encoding

Idea
Introduce new variables for subformulas.

Example:

\[F = (x \land \neg y) \lor (z \lor (x \land \neg w)) \]

"Triplets" using subformulas:

- Example:

 \[f = a \lor b, \quad a = x \land y, \ldots \]

Encode each triplet (as equivalence) in CNF:

\[
(f \lor a \lor b) \land (f \lor a) \land (f \lor b) \land \ldots
\]

One additional clause \(f \) to assert that \(F \) must be true

Note: Sometimes implication instead of equivalence is sufficient
Tseitin Encoding

Idea

Introduce new variables for subformulas.

- Example:
 \[F = (x \land \neg y) \lor (z \lor (x \land \neg w)) \]

- "Triplets" using subformulas:
 \[f = a \lor b, \quad a = x \land y, \ldots \]

- Encode each triplet (as equivalence) in CNF:
 \[(f \lor a \lor b) \land (f \lor a) \land (f \lor b) \land \ldots \]

 One additional clause \(f \) to assert that \(F \) must be true

Note: Sometimes implication instead of equivalence is sufficient
Tseitin Encoding

Idea

Introduce new variables for subformulas.

- Example:
 \[F = (x \land \neg y) \lor (z \lor (x \land \neg w)) \]
- “Triplets” using subformulas:
 \[f = a \lor b, \quad a = x \land \bar{y}, \ldots \]

\[\begin{align*}
 & a: \land \\
 & b: \lor \\
 & x \\
 & \neg y \\
 & z \\
 & \land : c \\
 & \neg w \\
\end{align*} \]
Tseitin Encoding

Idea

Introduce new variables for subformulas.

- Example:
 \[F = (x \land \neg y) \lor (z \lor (x \land \neg w)) \]

- "Triplets" using subformulas:
 \[f = a \lor b, \quad a = x \land \bar{y}, \ldots \]

- Encode each triplet (as equivalence) in CNF:
 \[(f \lor a \lor b) \land (f \lor \bar{a}) \land (f \lor \bar{b}) \land \ldots \]
Tseitin Encoding

Idea

Introduce new variables for subformulas.

- Example:
 \[F = (x \land \neg y) \lor (z \lor (x \land \neg w)) \]

- “Triplets” using subformulas:
 \[f = a \lor b, \quad a = x \land \neg y, \ldots \]

- Encode each triplet (as equivalence) in CNF:
 \[(f \lor a \lor b) \land (f \lor \neg a) \land (f \lor \neg b) \land \ldots \]

- One additional clause \((f)\) to assert that \(F\) must be true
Tseitin Encoding

Idea

Introduce new variables for subformulas.

- Example:
 \[F = (x \land \neg y) \lor (z \lor (x \land \neg w)) \]

- “Triplets” using subformulas:
 \[f = a \lor b, \quad a = x \land \neg y, \ldots \]

- Encode each triplet (as equivalence) in CNF:
 \[(f \lor a \lor b) \land (f \lor \neg a) \land (f \lor \neg b) \land \ldots \]

- One additional clause (\(f \)) to assert that \(F \) must be true

- Note: Sometimes implication instead of equivalence is sufficient
Tseitin Encoding: Definition

Given a formula F in propositional logic using connectives \land, \lor and \neg. The Tseitin-Encoding $\mathcal{T}(F)$ of F is a formula in CNF defined by:

$$\mathcal{T}(F) = d_F \land \mathcal{T}^*(F)$$

$$\mathcal{T}^*(F) = \begin{cases}
\mathcal{T}_{\text{def}}(F) \land \mathcal{T}^*(G) \land \mathcal{T}^*(H), & \text{if } F = G \circ H \text{ and } \circ \in \{\land, \lor\} \\
\mathcal{T}_{\text{def}}(F) \land \mathcal{T}^*(G), & \text{if } F = \neg G \\
\text{True,} & \text{if } F \in \mathcal{V}
\end{cases}$$

$$\mathcal{T}_{\text{def}}(F) = \begin{cases}
(d_F \lor d_G) \land (d_F \lor d_H) \land (d_F \lor \overline{d_G} \lor \overline{d_H}), & \text{if } F = G \land H \\
(d_F \lor d_G \lor d_H) \lor (d_F \lor \overline{d_G}) \land (d_F \lor \overline{d_H}), & \text{if } F = G \lor H \\
(d_F \lor \overline{d_G}) \land (d_F \lor d_G), & \text{if } F = \neg G
\end{cases}$$

$\mathcal{T}(F)$ introduces a new variable d_S for each subformula S of F. $\mathcal{T}(F)$ is satisfiable iff F is satisfiable.
Tseitin Encoding: Example

\[F = (x \land \neg y) \lor (z \lor (x \land \neg w)) \]
Tseitin Encoding: Example

\[F = \left(a, S_a \right) \lor \left(c, S_c \right) \]

Use auxiliary variables for subformulas as indicated above.
Tseitin Encoding: Example

\[F = (x \land \neg y) \lor (z \lor (x \land \neg w)) \]

- Use auxiliary variables for subformulas as indicated above.
- To simplify exposition, we treat negative literals like variables in \(T(F) \).
Tseitin Encoding: Example

\[F = (x \land \neg y) \lor (z \lor (x \land \neg w)) \]

- Use auxiliary variables for subformulas as indicated above.
- To simplify exposition, we treat negative literals like variables in \(\mathcal{T}(F) \).

\[
\mathcal{T}(F) = f \land \mathcal{T}^*(F) \\
= f \land \mathcal{T}_{\text{def}}(F) \land \mathcal{T}^*(S_a) \land \mathcal{T}^*(S_b) \\
= f \land \mathcal{T}_{\text{def}}(F) \land \mathcal{T}_{\text{def}}(S_a) \land \mathcal{T}_{\text{def}}(S_b) \land \mathcal{T}_{\text{def}}(S_c) \\
= f \land (f \lor a \lor b) \land (f \lor \overline{a}) \land (f \lor \overline{b}) \land \cdots \\
\mathcal{T}_{\text{def}}(F)
\]
Tseitin Encoding: Example (cont’d)

\[F = (x \land \neg y) \lor (z \lor (x \land \neg w)) \]

\[\mathcal{T}(F) = f \land T_{\text{def}}(F) \land T_{\text{def}}(S_a) \land T_{\text{def}}(S_b) \land T_{\text{def}}(S_c) \]

\[= f \land (\bar{f} \lor a \lor b) \land (f \lor \bar{a}) \land (f \lor \bar{b}) \]
\[\land (\bar{a} \lor x) \land (\bar{a} \lor \bar{y}) \land (a \lor \bar{x} \lor y) \]
\[\land (\bar{b} \lor z \lor c) \land (b \lor \bar{z}) \land (b \lor \bar{c}) \]
\[\land (\bar{c} \lor x) \land (\bar{c} \lor \bar{w}) \land (c \lor \bar{x} \lor w) \]
Tseitin Encoding: Example (cont’d)

\[
F = (x \land \neg y) \lor (z \lor (x \land \neg w))
\]

\[
T(F) = f \land T_{\text{def}}(F) \land T_{\text{def}}(S_a) \land T_{\text{def}}(S_b) \land T_{\text{def}}(S_c)
\]
\[
= f \land (\overline{f} \lor a \lor b) \land (f \lor \overline{a}) \land (f \lor \overline{b}) \\
\land (\overline{a} \lor x) \land (\overline{a} \lor \overline{y}) \land (a \lor \overline{x} \lor y) \\
\land (\overline{b} \lor z \lor c) \land (b \lor \overline{z}) \land (b \lor \overline{c}) \\
\land (\overline{c} \lor x) \land (\overline{c} \lor \overline{w}) \land (c \lor \overline{x} \lor w)
\]
Tseitin Encoding: Example (cont’d)

\[F = (x \land \neg y) \lor (z \lor (x \land \neg w)) \]

\[T(F) = f \land T_{\text{def}}(F) \land T_{\text{def}}(S_a) \land T_{\text{def}}(S_b) \land T_{\text{def}}(S_c) \]
\[= f \land (\overline{f} \lor a \lor b) \land (f \lor \overline{a}) \land (f \lor \overline{b}) \land (\overline{a} \lor x) \land (\overline{a} \lor \overline{y}) \land (a \lor \overline{x} \lor y) \land (\overline{b} \lor z \lor c) \land (b \lor \overline{z}) \land (b \lor \overline{c}) \land (\overline{c} \lor x) \land (\overline{c} \lor \overline{w}) \land (c \lor \overline{x} \lor w) \]
Tseitin Encoding: Example (cont’d)

\[F = \underbrace{a, S_a}_{\text{a, } S_a} \lor \underbrace{b, S_b}_{\text{b, } S_b} \lor \underbrace{c, S_c}_{\text{c, } S_c} \]

\[\mathcal{T}(F) = f \land \mathcal{T}_{\text{def}}(F) \land \mathcal{T}_{\text{def}}(S_a) \land \mathcal{T}_{\text{def}}(S_b) \land \mathcal{T}_{\text{def}}(S_c) \]

\[= f \land (\bar{f} \lor a \lor b) \land (f \lor \bar{a}) \land (f \lor \bar{b}) \land (\bar{a} \lor x) \land (\bar{a} \lor \bar{y}) \land (a \lor \bar{x} \lor y) \land (\bar{b} \lor z \lor c) \land (b \lor \bar{z}) \land (b \lor \bar{c}) \land (\bar{c} \lor x) \land (\bar{c} \lor \overline{w}) \land (c \lor \bar{x} \lor w) \]
Tseitin Encoding: Example (cont’d)

\[F = \left(x \land \neg y \right) \lor \left(z \lor \left(x \land \neg w \right) \right) \]

\[T(F) = f \land T_{\text{def}}(F) \land T_{\text{def}}(S_a) \land T_{\text{def}}(S_b) \land T_{\text{def}}(S_c) \]
\[= f \land (\overline{f} \lor a \lor b) \land (f \lor \overline{a}) \land (f \lor \overline{b}) \]
\[\land (\overline{a} \lor x) \land (\overline{a} \lor \overline{y}) \land (a \lor \overline{x} \lor y) \]
\[\land (\overline{b} \lor z \lor c) \land (b \lor \overline{z}) \land (b \lor \overline{c}) \]
\[\land (\overline{c} \lor x) \land (\overline{c} \lor \overline{w}) \land (c \lor \overline{x} \lor w) \]
Tseitin Encoding: Example (cont’d)

\[F = (x \land \neg y) \lor (z \lor (x \land \neg w)) \]

\[T(F) = f \land T_{\text{def}}(F) \land T_{\text{def}}(S_a) \land T_{\text{def}}(S_b) \land T_{\text{def}}(S_c) \]

\[= f \land (\overline{f} \lor a \lor b) \land (f \lor \overline{a}) \land (f \lor \overline{b}) \]

\[\land (\overline{a} \lor x) \land (\overline{a} \lor \overline{y}) \land (a \lor \overline{x} \lor y) \]

\[\land (\overline{b} \lor z \lor c) \land (b \lor \overline{z}) \land (b \lor \overline{c}) \]

\[\land (\overline{c} \lor x) \land (\overline{c} \lor \overline{w}) \land (c \lor \overline{x} \lor w) \]

\[\overset{\text{SAT}}{=} \]

\[(a \lor b) \land (\overline{a} \lor x) \land (\overline{a} \lor \overline{y}) \land (\overline{b} \lor z \lor c) \land (\overline{c} \lor x) \land (\overline{c} \lor \overline{w}) \]
Plaisted-Greenbaum Optimization [4]

\[T(F) = d_F \land T^1(F) \]

\[T^p(F) = \begin{cases}
T^p_{\text{def}}(F) \land T^p(G) \land T^p(H), & \text{if } F = G \circ H \text{ and } \circ \in \{\land, \lor\} \\
T^p_{\text{def}}(F) \land T^{p+1}(G), & \text{if } F = \neg G \\
\text{True}, & \text{if } F \in \mathcal{V}
\end{cases} \]

\[T^1_{\text{def}}(F) = \begin{cases}
(d_F \lor d_G) \land (d_F \lor d_H), & \text{if } F = G \land H \\
(d_F \lor d_G \lor d_H), & \text{if } F = G \lor H \\
(d_F \lor \overline{d_G}), & \text{if } F = \neg G
\end{cases} \]

\[T^0_{\text{def}}(F) = \begin{cases}
(d_F \lor \overline{d_G} \lor \overline{d_H}), & \text{if } F = G \land H \\
(d_F \lor \overline{d_G}) \land (d_F \lor \overline{d_H}), & \text{if } F = G \lor H \\
(d_F \lor d_G), & \text{if } F = \neg G
\end{cases} \]
Integer Multiplication / Factorization

\[s_{\text{out}} = s_{\text{in}} \oplus c_{\text{in}} \oplus A_i B_j \]
\[c_{\text{out}} = s_{\text{in}} c_{\text{in}} + s_{\text{in}} A_i B_j + c_{\text{in}} A_i B_j \]
Choosing a good encoding is very important!
- Encoding highly influences runtime of SAT solver
- Hard to come up with good encodings

Cardinality constraints are important in many practical applications

Tseitin encoding allows to carry over structure to CNF

