
GLUEM INI SAT 2.2.10 & 2.2.10-5
Hidetomo Nabeshima

University of Yamanashi, JAPAN
Koji Iwanuma

University of Yamanashi, JAPAN
Katsumi Inoue

National Institute of Informatics, JAPAN

Abstract—GLUEM INI SAT 2.2.10 is a SAT solver based on
M INI SAT 2.2 and the LBD evaluation criteria of learned clauses.
A new feature of 2.2.10 is an adaptive restart strategy based
on literal block size. The default restart strategy is same as
GLUCOSE, that is, the solver restarts when the average of LBDs
for recent learned clauses becomes worse. When the average size
of literal block is small, the solver uses other strategies: the
conflict generation speed based restart strategy for slow restart
instances, and Luby restart strategy for fast restart instances.

I. I NTRODUCTION

GLUEM INI SAT is a SAT solver based onM INI SAT 2.2 [1]
and the LBD evaluation criteria of learned clauses [2]. One
of the feature ofGLUEM INI SAT is the on-the-fly lazy simpli-
fication techniques based on binary resolvents [3], which are
inprocessing techniques and are executed frequently during the
search process of the satisfiability checking. These techniques
try to identify the truth value of variables and to detect
equivalent literals, and to simplify (learned) clauses by binary
self-subsuming resolution. These were introduced from 2.2.7
and some of them are refined and extended in 2.2.10.

The main feature of 2.2.10 is an adaptive restart strategy
which is based on literal block size. This is introduced for
solving hard instances that can not be solved by the LBD
based restart strategy. The other new features are two kinds
of preprocessing techniques to eliminate variables, and some
minor changes for VSIDS decision heuristics [4].

II. M AIN TECHNIQUES

The main feature of 2.2.10 isan adaptive restart strategy
based on literal block size. The default restart strategy of
GLUEM INI SAT is same asGLUCOSE, that is, the solver
restarts when the average of LBDs for recent learned clauses
becomes worse. Intuitively, the solver restarts to change the
search space for finding better learned clauses. This strategy
works well for most application instances. From the results of
the SAT 2014 Competition, we found that this strategy is weak
in the specific instances which have small literal blocks, that
often occurs in cryptographic instances. Aliteral block is a
set of literals which are propagated at the same decision level,
and is a key concept of the LBD evaluation criteria, which
evaluates a learned clause by the number of literal blocks in
it. The literals in a block would be expected to be propagated
at the same time. This means that even if a clause is long, it
would generate a propagation from the clause when it consists
of large literal blocks. In brief, the worth of LBD can be
exhibited for large block sized instances.

For small block sized instances, the strategies based on LBD
do not work well. Actually, when the restart speed (that is, the

number of conflicts per a restart) of those small block sized
instances are slow or fast, then the LBD based restart strategy
did not solve them in many cases. This means that the LBD
based restart strategy is too sensitive or unresponsive for such
instances.

GLUEM INI SAT changes the restart strategy when the av-
erage size of literal blocks after 200000 conflicts is small
(≤ 1.75 literals/block),

• if the restart speed is slow (> 400 conflicts/restart), then
the solver uses the conflict generation speed based restart
strategy.

• if the restart speed is fast (< 125 conflicts/restart), then
the solver uses Luby restart strategy that is the default
restart strategy ofM INI SAT 2.2.

The former strategy restarts when the average number of recent
decisions to generate a conflict is larger than the global ones.

In addition to the above, the version 2.2.10-5 changes the
LBD evaluation criteria into the activity based one, which is
used inM INI SAT, for reducing learned clauses. That is 2.2.10-
5 does not use the LBD criteria for small block sized instances.

III. PREPROCESSINGTECHNIQUES

In 2.2.10, we have introduced two kinds of preprocessing
techniques: incremental variable elimination and decision vari-
able elimination.

Variable elimination [5] is one of effective preprocessing
techniques, which eliminates a variablex if the number of
resolvents with respect tox is less than the number of clauses
that containsx or x̄. Incremental variable eliminationitera-
tively applies the variable elimination by relaxing the condition
gradually, that is, the solver permits increasing clauses if the
decreasing rate of variables is greater than the increasing
rate of clauses. This technique is applied for large instances
(≥ 10000 variables) and the ratio of clauses to variables is
small (≤ 10).

Decision variable eliminationclassifies variables into non-
decision variables that are not selected by decision heuristics.
If each clause has at most one non-decision variable, then the
value of non-decision variables are propagated by other literals
in the clauses eventually. This means that the mechanism
of satisfiability-checking does not need to any modification.
GLUEM INI SAT classifies a variablex into a non-decision
variable when it satisfies the following conditions:

1) each original clause that containsx or x̄ has no non-
decision variables.

2) the cost of x is small (≤ 25), where the cost is
the estimated number of resolvents with respect tox
(positive occurrences times negative occurrences).

3) x has the smallest cost in each clause that hasx or x̄.

The first one is a sufficient condition for propagating truth
value of non-decision variables. The second and third ones
are heuristics to select infrequent and insignificance variables.
Furthermore, when a learned clause has two or more non-
decision variables, then the solver classifies them into decision
variables except for one. This is introduced to avoid obstruct-
ing the propagation from the clause.

IV. OTHER TECHNIQUES

GLUEM INI SAT uses VSIDS decision heuristics [4] same
as M INI SAT. The variable decaying factor of VSIDS
(var-decay in M INI SAT) controls the decrement of the
activity for every variable relatively. If it is low, the activity
decreases rapidly and the decision heuristics selects variables
which are related torecent conflicts. Conversely, if it is
high, the decision heuristics selects variables based onoverall
conflicts.

To explore the search space diversely in an early stage, it is
a natural way to increase the decaying factor gradually.GLU-
COSE 3.0 has such a mechanism and it was implemented in
GLUEM INI SAT 2.2.8. In 2.2.10, the parameters of this strategy
are slightly changed. It starts from 0.6, and is increased up to
0.95 gradually until 100000 conflicts occur.

The final value of the variable decaying factor is 0.95
in default. When a given instance has not many variables
(< 10000 variables), the solver changes the final value of
the factor according to the following graph. This intends to
suppress the change of variable activity in small instances.

var_decay

vars500 10000

0.99

0.95

The restart blocking [6] which was introduced from 2.2.8
but is disabled in 2.2.10.

V. AVAILABILITY

GLUEM INI SAT is developed based onM INI SAT 2.2. Per-
missions and copyrights ofGLUEM INI SAT are exactly the
same asM INI SAT. GLUEM INI SAT can be downloaded at
http://glueminisat.nabelab.org/.

ACKNOWLEDGMENT

This research is supported in part by Grant-in-Aid for
Scientific Research (No. 26330248) from Japan Society for
the Promotion of Science and by Kayamori Foundation of
Informational Science Advancement.

REFERENCES

[1] N. Eén and N. S̈orensson, “An extensible SAT-solver,” inProceedings
of the 6th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2003), LNCS 2919, 2003, pp. 502–518.

[2] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” inProceedings of IJCAI-2009, 2009, pp. 399–404.

[3] H. Nabeshima, K. Iwanuma, and K. Inoue, “On-the-fly lazy clause
simplification based on binary resolvents,” inICTAI. IEEE, 2013, pp.
987–995.

[4] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” inProceedings of the 38th
Design Automation Conference (DAC 2001), 2001, pp. 530–535.

[5] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” inProceedings of the 8th International Con-
ference on Theory and Applications of Satisfiability Testing (SAT 2005),
LNCS 3569, 2005, pp. 61–75.

[6] G. Audemard and L. Simon, “Refining restarts strategies for sat and
unsat,” inCP, ser. Lecture Notes in Computer Science, M. Milano, Ed.,
vol. 7514. Springer, 2012, pp. 118–126.

