
MINISAT 2.1 and MINISAT++ 1.0 — SAT Race 2008 Editions

Niklas Sörensson

Chalmers University of Technology, Göteborg, Sweden.

nik@cs.chalmers.se

Niklas Eén

Cadence Berkeley Labs, Berkeley, USA.

niklas@cadence.com

1 Introduction

MINISAT is a SAT solver designed to be easy to use,
understand, and modify while still being efficient.
Originally inspired by ZCHAFF [10] and LIMMAT [1],
MINISAT features the now commonplace two-literal
watcher scheme for BCP, first-UIP conflict clause
learning, and the VSIDS variable heuristic (see [5] for
a detailed description). Additionally, it has support
for incremental SAT solving, and it exists in varia-
tions that support user defined Boolean constraints
and proof-logging. Since it’s inception, the most
important improvements have been the heap-based
VSIDS implementation, conflict clause minimization
[4], and variable elimination based pre-processing [2].

2 MINISAT 2.1

This version is largely an incremental update that
brings MINISAT more in line with the current most
popular heuristics, but also introduces a number of
data structure improvements. Most are rather well
known and of lesser academic interest but mentioned
in Section 4 for completeness.

Heuristics During the last couple of years it has
been made clear that using a more aggressive restart
strategy [7] is beneficial overall, in particular if it is
used in combination with a polarity heuristic based
on caching the last values of variables [12]. MINISAT

uses the Luby-sequence [9] for restarts, multiplied by
a factor of 100. For polarity caching it stores the last
polarity of variables during backtracking, except for
variables from the last decision level.

Blocking Literals It can be observed that when
visiting a watched clause during unit propagation, it
is most commonly the case that the clause is satisfied
in the current context. Detecting this without actu-
ally having to read from the clause’s memory turns
out to be a big win as indicated by [13], [8].

However, these techniques require an extra level of
indirection which makes the win less clear cut. In-
stead, one can pair each clause in the watcher lists
with one copy of a literal from the clause, and when-
ever this literal is true, the corresponding clause can
be skipped. This is very similar to the approach used
in the implementation of the SAT solver from Barce-
logic Tools [11], but differs crucially in the sense that
the auxiliary blocking literal does not have to be equal
to the other watched literal of the clause, and thus
there is no extra cost for updating it.

3 MINISAT++ 1.0

This tool is envisioned as a rewrite of MINISAT+ [6],
but contains so far only the circuit framework nec-
essary to participate in the AIG track. As an AIG
solver it is currently rather simple: the circuit is first

1



simplified with DAG-aware rewriting (inspired by [3],
but far less powerful at the moment), then clausified
using the improved Tseitin transformation (see [3] for
an overview), and finally MINISAT 2.1 is run on the
result, including CNF based pre-processing.

4 SAT-RACE Hacks

The versions submitted to the SAT-RACE contains
two data structure improvements designed to improve
memory behaviour of the solvers: Firstly, binary
clauses are treated specially as in MINISAT 1.14 [4].
In combination with blocking literals this is slightly
more natural to implement, but on the other hand,
there is some overlap in their beneficial effects and
the difference thus becomes smaller. Secondly, a spe-
cialized memory manager is used for storing clauses.
This was introduced to allow 32-bit references to
clauses even on 64-bit architectures, but it also gives
a small to modest performance benefit on 32-bit ar-
chitectures depending on the quality of the system’s
malloc implementation.

Finally, even though the pre-processing of
MINISAT scales relatively well, there are still cases
were it takes too much time or memory. As a sim-
ple safe-guard measure, pre-processing is inactivated
if the problem has more than 4 million clauses.

References

[1] A. Biere. The evolution from limmat to nanosat.
In Technical Report 444, Dept. of Computer Sci-
ence, ETH Zürich, 2004.

[2] N. Eén and A. Biere. Effective preprocessing
in SAT through variable and clause elimination.
In Proc. of the 8th Int. Conference on Theory
and Applications of Satisfiability Testing, vol-
ume 3569 of LNCS, 2005.

[3] N. Eén, A. Mishchenko, and N. Sörensson. Ap-
plying logic synthesis for speeding up sat. In
SAT, pages 272–286, 2007.

[4] N. Eén and N. Sörensson. MiniSat v1.13 - A SAT
Solver with Conflict-Clause Minimization. Sys-
tem description for the SAT competition 2005.

[5] N. Eén and N. Sörensson. An extensible sat
solver. In Proc. of the 6th Int. Conference on
Theory and Applications of Satisfiability Test-
ing, 2003.

[6] N. Eén and N. Sörensson. Translating pseudo-
boolean constraints into sat. Journal on Sat-
isfiability, Boolean Modeling and Computation
(JSAT), 2:1–26, 2006.

[7] J. Huang. The effect of restarts on the efficiency
of clause learning. In IJCAI, pages 2318–2323,
2007.

[8] H. Jain and E. Clarke. Sat solver descriptions:
Cmusat-base and cmusat. System description for
the SAT competition 2007.

[9] M. Luby, A. Sinclair, and D. Zuckerman. Op-
timal speedup of las vegas algorithms. In Israel
Symposium on Theory of Computing Systems,
pages 128–133, 1993.

[10] M. W. Moskewizc, C. F. Madigan, Y. Zhao,
L. Zhang, and S. Malik. Chaff: Engineering an
efficient sat solver. In Proc. of 12th Int. Con-
ference on Computer Aided Verification, volume
1855 of LNCS, 2001.

[11] R. Nieuwenhuis and A. Oliveras. Barcelogic for
smt. http://www.lsi.upc.edu/∼oliveras/

bclt-main.html.

[12] K. Pipatsrisawat and A. Darwiche. A lightweight
component caching scheme for satisfiability
solvers. In J. ao Marques-Silva and K. A.
Sakallah, editors, SAT, volume 4501 of Lec-
ture Notes in Computer Science, pages 294–299.
Springer, 2007.

[13] T. Schubert, M. Lewis, N. Kalinnik, and
B. Becker. Miraxt – a multi-threaded sat
solver. System description for the SAT competi-
tion 2007.

2


