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Overview

ManySat is a DPLL-engine which includes all the classical features like two-
watched-literal, unit propagation, activity-based decision heuristics, lemma dele-
tion strategies, and clause learning. In addition to the classical first-UIP scheme,
it incorporates a new technique which extends the classical implication graph
used during conflict-analysis to exploit the satisfied clauses of a formula [1].

When designing ManySat we decided to take advantage of the main weakness
of modern DPLLs: their sensitivity to parameter tuning. For instance, changing
parameters related to the restart strategy or to the variable selection heuristic
can completely change the performance of a solver on a particular problem. In a
multi-threading context, we can easily take advantage of this lack of robustness
by designing a system which will run different incarnation of a core DPLL-engine
on a particular problem. Each incarnation would exploit a particular parameter
set and their combination should represent a set of orthogonal strategies.

The following components where used to differentiate each strategies:

– Variable selection
– Value selection, with a newly developed dynamic policy, and classical phase-

learning [4, 5].
– Restarts, with newly developed dynamic policies.
– etc.

To allow ManySat to perform better than any of the selected strategy, conflict-
clause sharing was added. This is done with respect to clause’s size and to other
factors. Technically, this is implemented in a way which minimizes locked ac-
cesses to a shared clause database.

Code

The system is written in C++ and has about 4000 lines of code. It was submit-
ted to the race as a 32 bit binary. It is written on top of minisat 2.02 [3], which



was extended to accommodate the new learning scheme, the various strategies,
and our multi-threading clause sharing policy. SatElite was also applied system-
atically by the treads as a pre-processor [2].
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