
ManySat: solver description

Youssef Hamadi1, Said Jabbour2, and Lakhdar Sais2

1 Microsoft Research
7 J J Thomson Avenue, Cambridge, United Kingdom

youssefh@microsoft.com
2 CRIL-CNRS, Université d’Artois

Rue Jean Souvraz SP18, F-62307 Lens Cedex France
{jabbour,sais}@cril.fr

Overview

ManySat is a DPLL-engine which includes all the classical features like two-
watched-literal, unit propagation, activity-based decision heuristics, lemma dele-
tion strategies, and clause learning. In addition to the classical first-UIP scheme,
it incorporates a new technique which extends the classical implication graph
used during conflict-analysis to exploit the satisfied clauses of a formula [1].

When designing ManySat we decided to take advantage of the main weakness
of modern DPLLs: their sensitivity to parameter tuning. For instance, changing
parameters related to the restart strategy or to the variable selection heuristic
can completely change the performance of a solver on a particular problem. In a
multi-threading context, we can easily take advantage of this lack of robustness
by designing a system which will run different incarnation of a core DPLL-engine
on a particular problem. Each incarnation would exploit a particular parameter
set and their combination should represent a set of orthogonal strategies.

The following components where used to differentiate each strategies:

– Variable selection
– Value selection, with a newly developed dynamic policy, and classical phase-

learning [4, 5].
– Restarts, with newly developed dynamic policies.
– etc.

To allow ManySat to perform better than any of the selected strategy, conflict-
clause sharing was added. This is done with respect to clause’s size and to other
factors. Technically, this is implemented in a way which minimizes locked ac-
cesses to a shared clause database.

Code

The system is written in C++ and has about 4000 lines of code. It was submit-
ted to the race as a 32 bit binary. It is written on top of minisat 2.02 [3], which



was extended to accommodate the new learning scheme, the various strategies,
and our multi-threading clause sharing policy. SatElite was also applied system-
atically by the treads as a pre-processor [2].

References

1. G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and L. Sais. A generalized
framework for conflict analysis. In SAT (to appear), 2008.

2. Niklas Eén and Armin Biere. Effective preprocessing in sat through variable and
clause elimination. In Fahiem Bacchus and Toby Walsh, editors, SAT, volume 3569
of Lecture Notes in Computer Science, pages 61–75. Springer, 2005.

3. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer, 2003.

4. Daniel Frost and Rina Dechter. In search of the best constraint satisfaction search.
In AAAI, pages 301–306, 1994.

5. Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme
for satisfiability solvers. In João Marques-Silva and Karem A. Sakallah, editors, SAT,
volume 4501 of Lecture Notes in Computer Science, pages 294–299. Springer, 2007.


