
TINISAT in SAT Competition 2008

Jinbo Huang
National ICT Australia and Australian National University

jinbo.huang@nicta.com.au

Overview
The development of TINISAT (Huang 2007a) started as part
of an investigation of the effect of restart policies on clause
learning (Huang 2007b). The version entering the competi-
tion, TINISAT 0.22, is coupled with the SATELITE prepro-
cessor (Eén & Biere 2005). Algorithm 1 gives the top-level
procedure of the solver.

Algorithm 1 TINISAT

1: loop
2: if (literal = selectLiteral()) == nil then
3: return SATISFIABLE
4: if !decide(literal) then
5: repeat
6: learnClause()
7: if assertionLevel() == 0 then
8: return UNSATISFIABLE
9: if restartPoint() then

10: backtrack(1)
11: else
12: backtrack(assertionLevel())
13: until assertLearnedClause()

The following components of a typical clause learn-
ing SAT solver can be identified: decision heuristic (se-
lectLiteral), unit propagation (decide, assertLearned-
Clause), clause learning (learnClause, backtrack),
restarts (restartPoint, backtrack). Detailed semantics of
the functions involved can be found in (Huang 2007b).

Decision Heuristic
TINISAT 0.22 uses the following decision heuristic: For each
literal a score is kept that is initially the number of its oc-
currences in the original clauses. On learning a clause, the
score of every literal is incremented by 1 for each of its oc-
currences in clauses that are involved in the resolution pro-
cess. The scores of all literals are halved once every 128
conflicts. When a decision is called for (Line 2 of Algo-
rithm 1), we pick a free variable with the highest score (sum
of two literal scores) from the most recently learned clause
that has not been satisfied; if no such clause exists (at most
256 clauses are searched for this purpose) we pick any free
variable with the highest score.

The variable is then set to a value using a heuristic in-
spired by (Pipatsrisawat & Darwiche 2006): Each variable
has a field called phase, initially set to the value with the
higher score. On backtracking, every variable whose assign-
ment is erased has its phase set to that assignment, except for
variables set in the latest decision level. When chosen for de-
cision, a variable is set to its phase. However, this heuristic
is bypassed if the two values differ in score by more than 32,
in which case the value with the higher score is used.

Restart Policy
TINISAT 0.22 uses an instance of a class of restart
policies proposed in (Luby, Sinclair, & Zuckerman
1993) based on the following sequence of run lengths:
1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . ., formally defined as
the sequence t1, t2, t3, . . . such that:

ti =
{

2k−1, if i = 2k − 1;
ti−2k−1+1, if 2k−1 ≤ i < 2k − 1.

TINISAT 0.22 takes a “unit run” in this sequence to
be 512 conflicts. Hence the actual restart intervals are:
512, 512, 1024, 512, 512, 1024, 2048, . . .

References
Eén, N., and Biere, A. 2005. Effective preprocessing in
SAT through variable and clause elimination. In Proceed-
ings of the Eighth International Conference on Theory and
Applications of Satisfiability Testing (SAT), 61–75.
Huang, J. 2007a. A case for simple SAT solvers. In Pro-
ceedings of the 13th International Conference on Princi-
ples and Practice of Constraint Programming (CP), 839–
846.
Huang, J. 2007b. The effect of restarts on the efficiency of
clause learning. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI), 2318–
2323.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of Las Vegas algorithms. Information Processing
Letters 47(4):173–180.
Pipatsrisawat, T., and Darwiche, A. 2006. SAT solver de-
scription: Rsat. In SAT-Race.


